
AD-AI09 981 COMPUTER SCIENCE S CORP FALLS CHUR CH VA P/S 9/2
ADA INTE GRATED ENVIRONME NT II COMP UTER PROGRAM DEVELOPMENT SPEC -ETC(U)
DEC Al F30602-8I C 0292

UNCLASSIFIED RADC-TR-81-364-PT-2 M

I IEENOMONhEE

- 3

NA P()COFI Pfi 8QOU I IN If S I CH ART

DOCUMENT... ..'lAIO s . o-a-, . wm T1

PHOTOGRAPH THIS SHEET

LEVEL OJ I- Si 1e EET ! R

O~~~~~~~ vcxc~x Z eopievt .SFeenQ 4v-~r
UFDOCUMENT ICTOENTIFICAION /Sser.

TDISTIBUTIN STATEMENT A
Approved for public release;

Distribution Unlimited

ISTRBUTION STATEMENT

ACCESSION FOR 0.
TIS GRAOC

AK
TAB QDTIC

UNANNOUNCED 0 LE
JAN 25 1982

ST
DISTRIBUTION/0
AVAILABILITY CODES
DIST AVAIL. AND/OR SPECIAL DATE ACCESSIONED

DISTRIUTION STAMP ""

82 01 '2 002

DATE RECEIVED IN DTIC

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2

DTCFORM 7ADOCUMENT PROCESSING SHEE
DTCOCT 7970

RAOC-TR-81-364, Part 2
Interim Report
December 1981

- ~ADA INTEGRATED ENVIRONMENT 11
OMPUTER PROGRAM DEVELOPMENT
PECIFICATION

'~Computer Sciences Corporation

[APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-81-364, Part 2 has been reviewed and is approved for publication.

APPROVED:

DONALD F. ROBERTS
Project Engineer

APPROVED:

JOHN J. MARCINIAK, Colonel, USAF
Chief, Command and Control Division

FOR THE COMMANDER: 4 y . .

JOHN P. HUSS
Acting Chief, Plans Office

-If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC . OES) Griffiss AFB NY 13441. This will assist -us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

K J-- -- - ~-7

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS5 PAGE (When Dale.90116fed),

REPORT DOCUMENTATION PAGE BEFOR COMETIN ORM
1. REORT NM§9IQ2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG3 MNMER

4. TITLE (and S*uil) S. TYE of REPORT a PERIOD COVERED

ADA INTEGRATED ENVIRONMENT II COMPUTER Interim Report
PROGRAM DEVELOPMENT SPECIFICATION 15 Sep 80 - 15 Mar 81

4. PERFORMING 01. REPORT NUMBeRn
____ ___ ____ ___ ___ ____ ___ ____ ___ ___ N/A

7. AUTNOR(A) 6. CONTRACT OR GRANT NUMGER'e)

F30602-80-C-0292
S. PERFORMING ORGANI1ZATION NAME AND ADDRESS I*. PROGRAM ELEMENT. PROJECT. TASKC

CompterScincesCororaionAREA A WORK UNIT NUMBERS

803 Broad Street 55811918 2F3326

Falls Church VA 22046 5811
I I. CONTROLLING oFFicE NAME AND ADDRESS 12. REPORT DATE

Rome Air Development Center (COES) December 1981

Griffiss AFB NY 13441 13. NUMERM OF PAGES
442

14. MONITORING AGENCY NAME A AOORESSif different fromw Controlling Office) IS. SECURITY CLAS. (*I this tepon)

Same UNCLASSIFIED

Se. OE1CLASSIFICATIONI DOWNGRAOING

N/AsHUL
14. DISTRIBIUTION STATEMENT (of this Reort)

Approved for public release; distribution unlimited.

17. OISTRIOUTION STATEMENT (of thme abstract entered in Block 20. it differe tree, Report)

Same

18. SUPPLEMENTARY NOTES

RADC Project Engineer: Donald F. Roberts (COES)

19. KCEY WORDS (Cettrnae onm revere aide ff Receecety and identify by block nminlbr)

Ada MAPSE AIE
Compiler Kernel Integrated environment
Database Debugger Editor
KAPSE APSE

20. ABSTRACT (Centinme en reverse side It n.eesar end Identify by block mmenbr)

The Ada Integrated Environment (AlE) consists of a set of software tools
intended to support design, development and maintenance of embedded
computer software. A significant portion of an AIE includes software
systems and tools residing and executing on a host computer (or set of
computers). This set is known as an Ada Programming Support Environment
(APSE). This B-5 Specification describes, in detail, the design for a
minimal APSE, called a MAPSE. The MAPSE is the foundation upon which an

DD I'A 13 1473 EDITION OFr 1 NOV So is OBSOLETEc UNCLASSIFIED

SECURITY CLASSIFICA~tON or 71415 PAGE (When Data &Rtere)

UNCLASSIFIED

S CURTY .CLASaIPICATION C
r

P ThS PA3(IImh Data EIe)

APSE is built and will provide comprehensive support throughout the
design, development and maintenance of Ada software. The MAPSE tools
described in this specification include an Ada compiler, linker/loader,
debugger, editor, and configuration management tools. The kernel (KAPSE)

will provide the interfaces (user, host, tool), database support, and
facilities for executing Ada programs (runtime support system).

mI

UNCLASSIFIED

SECUMITY CLASSIICATION 00 T " .9&AG ' n DeW E te.E,

Mika&&"

INTRODUCTION

This document presents the Computer Program Development Specifications (Type

B5) for the Computer Program Configuration Items (CPCIs) for the CSC/SEA

design of the Ada Integrated Environment (AIE) under Rome Air Development

Center (RADC) Contract Number F30602-80-C-0292. These specifications are

comprised of the following volumes:

PART I:

Volume 1, Computer Program Development Specification for CPCI KAPSE

Framework.

Volume 2, Computer Program Development Specification for CPCI KAPSE Data

Base System.

PART II:

Volume 3, Computer Program Development Specification for CPCI APSE

Command Language Interpreter.

Volume 4, Computer Program Development Specification for CPCI MAPSE

Configuration Management-System.

Volume 5, Computer Program Development Specification for CPCI Ada

Compiler.

Volume 6, Computer Program Development Specification for CPCI MAPSE

Linker.

Volume 7, Computer Program Development Specification for CPCI MAPSE

Editor.

Volume 8, Computer Program Development Specification for CPCI MAPSE

Debugger.

Accompanying this document is an Interim Technical Report (ITR), which

describes the principles influencing the preliminary design and provides the

rationale for the decisions made, and the System Specification (Type A),

which presents the functional requirements for the AIE.

Table 1 provides a cross-reference between the AIE Statement of Work (SOW)

and the specifications.

CM - 1

PHASE I SOW REQUIREMENTS A -SPEC. B5 -SPEC.

4.1

Phase I Design

4.1.1 3.1.1
General Requirements

41113.1.1.1 KDBS - 3.2.5
Data Base Support, Interfaces to 13.1.1.2 3.3
host facilities (H.W. & S.W.), User 1 3.1.4 ACLI - 3.2.5
1interfaces. tool interfaces 13.7.1 3.3

4.1.1.2 3.1.1.1 IKFW - 3.1.1a
1Portable to maxium extent Possible,: 3.1.1.2 1KDBS - 3.1.1a
External interfaces should be 3.1.2 IACLI - 3.1.1
clearly isolated, clearly :3.1.4 ;CMS - 3.1.1a
identified 315Cmie ..

3.1.5. 1 CoLier - 3.1.1a
3.1.5.2 .1.

Linkger - 3.1.1

E.-. ... ditor 3.3.

covninaewe sr ol a1AL - Comn

4.1.1.3 1 3.1.5.3 KDBS -3.3.5a

Specliy luunifrm urprotol tet 3.2.52 KFV - 3.2.
conentifo sbere sr ol and syte ACror - Co3m73 and

KASE/Mware faliies soulad be KDS -I.

4..14 32. Dbuge - 3.2.51

CM 2

PHASE I SOW REQUIREMENTS A - SPEC B5 - SPEC

~4.1.2
KAPSE DATA BASE REQUIREMENTS

1 4.1.2.1 3.7.1.2 KDBS - 3.2.5.6
Capability to create, delete, 3.3.4
modify, store, retrieve, input, and
output data base objects

4.1.2.2 3.7.1.2 KDBS - 3.2.5.3
Shall provide for all forms of data

1 necessary to fulfill all SOW
Requirements

14.1.2.3 3.7.1.2 KDBS -3.2.5
1Shall not be dependent on external
1software systems not part of the
1host operating system

14.1.2.4 13.7.1.2 KDBS -3.2.5
1Support creation and storage of Ada 3.7.2 3.3.1
1libraries in source form 3.3.4

4.1.2.5 13.7.1.2 1KDBS -3.2.5.3

Capability to define new 3.3.1
categories of objects without
imposing restrictions on computer
information stored in objects

4.1.2.6 3.7.1.2 KDBS 3.2.5.6

Provide flexible storage facilities 13.3.4
Ito all MAPSE tools. Capability to
1read and write data base objects
1from within any MAPSE tool using
1data transfer and control functions
1and high level 1/0 function

1 4.1.2.7 3.7.1.2 KDBS - 3.2.5.1
Capability to create partitions 3.3.2

.23 12KCM -3

Support_?_ creatin.and. torageof.Ada3.7.2...1

PHASE I SOW REQUIREMENTS A - SPEC B5 - SPEC

4.1.2.8 3.7.1.2 1 KDBS - 3.2.5.4
Capability to assign version 1 3.3.1
qualifiers to objects or groups of
objects. Time/Date and serial
number. Capability to designate
and use default version

4.1.2.9 3.7.1.2 KDBS - 3.2.5
Capability to create object 3.2.5.1
attributes: History, Category and 3.2.5.2
Access. 3.2.5.4

3.2.5.3

3.2.5.5
3.3.1
3.3.3

4.1.2.10 3.7.1.2 KDBS - 3.2.5.1
Capability to control access to 1 3.2.5.2
data base objects using version 3.2.5.3
qualifier, attributes, and 3.2.5.4
partitions. "Programmable" access 3.2.5.5
controls; provision for privileged 1 3.2.5.6
user. 3.3.1

3.3.3

4.1.2.11 1 3.7.1.2 KDBS - 3.2.5.7
Capability to archive data base 3.2.5.8
objects 3.3.6

3.3.7

4.1.2.12 3.7.1.2 KDBS - 3.2.5
Data base resources and operations 1 3.3
as a result of this effort shall
be available to Ada programmers

4.1.3

KAPSE INTERFACE REQUIREMENTS

4.1.3.1 3.1.5.2 KDBS - 3.2.4
Specifiy virtual interface for 3.7.2.1 3.2.5

1 KAPSE /MAPSE communication 3.3
3.2.4.1

CM - 4

Ma.

PHASE I SOW REQUIREMENTS A - SPEC B5 - SPEC

4.1.3.2 3.1.5.2 KFW - 3.2.4.1
Virtual interface will provide 3.7.2.1 KDBS - 3.2.4
user capability to invoke MAPSE
tools, interact and exercise
control over invoked tool

4.1.3.3 3.1.5.2 KFW - 3.2.4.1
Virtual interface will have the 1 ACLI - 3.1.3 I
capability to invoke any MAPSE tool 3.2.4.2
from other MAPSE tool

4.1.3.4 3.1.5.3 KFW - 3.3.2

Virtual interface will provide the 3.7.2.1 3.2.5.2
capability for user LOGON/LOGOFF
INITIATE/TERMINATE functions

.1.3.5 3.1.5.1 ACLI - 3.1.1
Virtual interface will provide the 3.7.2.1 3.2.4.1
capability to execute Ada programs

4.1.3.6 3.1.5.1 1 ACLI - 3.2.5
User commands for job control and 3.7.2.1
invoking tools shall have a uniform
format

4.1.3.7 3.1.5.1 ACLI - 3.1.1
User communication at command level 1
will be possible in standard Ada
character set

1 4.1.3.8 3.1.5.3 KFW 3.3.1
* Provide standard terminal interface * 3.3.9
a specifications and functions to 3.4.1.2.8
a facilitate batch and interactive It
terminals. Specification will
Include protocols for synchronous
user interactions and standards for
implementing simple editing of the
command line

cm 5

PHASE I SOW REQUIREMENTS A - SPEC B5 - SPEC

4.1.3.9 1 3.7.1.1 KFW - 3.2.5.8
Specify host interfaces to support 3.2.5.9
low-level I/0 function and high 3.3.5.10
level I/0 package 3.3.9

3.3.10

4.1.3.10 3.1.5.2 KDBS - 3.2.5.6
Specify data identified as shared 3.7.2 3.3.4
data and provide as standard
interfaces

4.1.4
KAPSE FUNCTIONS

4.1.4.1 3.1.1.1 KDBS - 3.2.5.6
Provide basic Run-time support 3.3.4
facilities

4.1.4.2 3.1.1.1 1KDBS -3.2.5.6
Provide basic data transfer and 3.7.1.1 3.3.4
control functions to support high
level 1/0 package

4.1.5
1GENERAL MAPSE REQUIREMENTS

4.1.5.1 3.7.2 Compiler - 3.1.1
Tools written in Ada and conform to Editor - 3.1.1

standard interface specifications Debugger - 3.1.1
CM - 3.1.1

ACLI - 3.1.1
Linker - 3.1.1

4.1.5.2 3.1.5.2 KDBS - 3.2.4
Inter-tool communication via 3.7.2 KFW - 3.2.4.1
virtual interface facilities ACLI - 3.1.3

CM 6

PHASE I SOW REQUIREMENTS A - SPEC B5 - SPEC

4.1.5.3 3.1.5.1 ACLI - 3.1.1

Formats for similar user commands
shall be uniform and consistent
across all tools

4.1.5.4 3.1.5.2 ACLI - Appendix

Data produced by one MAPSE tool 3.7.2 ACL
needed or useful to another tool Compiler - Appendix A
shalled be saved. Identify such Appendix C
data and provide interface * Appendix D

specifications Linker - 3.3.2.3
Appendix C

3.7.2.5 Editor - 3.2.5
MAPSE Editor, includes the 3.3
following capabilities: find, alter 1
insert, delete, input, output, move
copy, and substitute

4.1.7 1Debugger
MAPSE Debugger

4.1.7.1 3.7.2.6 1Debugger -3.2.5
Shall function at the Ada level

.7.2 13.7.2.6 Deugr-3.2.5
Shall support debugging of all Ada 13.3.2
language features including 3.3.15
concurrent programs

4.1.7.3 13.7.2.6 1Compiler - Appendix C
Shall provide linkage between 111Debugger - 3.2.5
executing program in binary form 113.2.6
and corresponding source program 1Linker - 3.2.5.3

1Editor - 3.3

z CM -7

A-" I

. I I, .. .I.. ,# i
'-

. . _ ,. L. L . .

PHASE I SOW REQUIREMENTS A - SPEC B5 - SPEC

4.1.7.4 3.7.2.6 Debugger - 3.2.4
As a minimum shall provide:

Breakpoints
Display Values

Modify Values
Display and modifications of

variables shal be machine
or scalar type
representations at the
users option

Display Subprogram arguments
Modify flow of program
Tracking
Dumps

4.1.8 Compiler
Compiler Requirements

* Compilerler

4.1.8.1 13.7.2.3 Coplr-3.3
Operate in a modular fashion;

minimize resource utilization

4.1.8.2 13.7.2.3 Compiler -3.2.5
Operate in batch, remote batch,
and on-line modes

4.1.6.3 13.7.2.3 Coplr-3.2.5
1Shall be easily rehosted and
1retargeted

4-..4 13.7.2.3 1Compiler -3.2.5
Procea . Ada source and produce an

efficient, equivalent program

4.1.8.4.1 3.7.2.3 1Compiler -3.2.5
Process the complete Ads
language

CM 8

aIOU_

PHASE I SOW REQUIREMENTS A - SPEC B5 - SPEC

4.1.8.4.2 3.7.2.3 Compiler - 3.2.4
Design pragmas to support require-
ments, design language pragmas

4.1.8.5 1 3.7.2.3 Compiler - 3.2.5
Produce all necessary outputs 1 3.7.2.4 Appendix C
required to implement separate 1 a Appendix D
compilation and linking and execu Appendix E
tion produce output listings any or
all of which can be user suppressed.!

4.1.8.5.1 1 3.7.2.3 Compiler - 3.2.5
Produce symbol attribute listing 3.3.14

Appendix E

14.1.8.5.2 1Compiler -3.2.5
1Produce symbol cross reference 3.3.14
1listing Appendix E

14.1.8.5.3 1Compiler -3.2.5
1Produce source listings 3.3.2

Appendix E

1 .1.8.5.4 3.7.2.3 1Compiler -3.2.5
1Produce object program listing 3.3.13

Appendix E

4.1.8.5.5 1 3.7.2.3 Co p l r -3.2.5Collect, store. and Output source 3.3.4

program and compilation statistics Appendix E

CM 9

*

PHASE I SOW REQUIREMENTS A - SPEC B5 - SPEC

4.1.8.5.6 3.7.2.3 Compiler- 3.2.5
Produce environment listing 3.3.13

Appendix E

4.1.8.5.7 3,7.2.3 Cmie-3.2.5
Produce system management listings 1Appendix E

4.1.8.6 13.7.2.3 mie-3.3
Shall perform extensive error 3.3.2
checking. Errors shall be associa- 3.3.4
ted with the source line number Appendix E

4.1.8.6.1 13.7.2.3 1Compiler -Appendix E
1Severities of compiler errors shall
include

4.1.8.6.2 13.7.2.3 1Compiler -Appendix E
Error messages shall contain an 1 11
error identifier, severity code. and!
a descriptive text

4.1.8.6.3 3.7.2.3 Copiler- 3.2.5
The compilers shall detect 100 of Appendix E
syntax errors and all seantic
errors, any capacity requirement

1that has been exceeded; list of all
error messages generated shall
appear in the Users Manual.

4.1.8.6 3.7.2.3 Compiler- 3.2.4
S Optimization shall occur at the 113.2.7
user's option via language pragmas. 3.2.8

Optimization with respect to memory 13.2.9
usage and execution speed shall be 3.2.10
1.provided. 3.2.11

3.2.12

CM -10
S i c r s

a a.. IIr

PHASE I SOW REQUIREMENTS A - SPEC B5 - SPEC

4.1.8.8 3.2.1 Compiler - 3.2.5
Shall process Ada source at a rate a

of 1000 statements per minute or
faster

4.1.8.9 3.7.2.3 Compiler - 3.5
Gal shall be no arbitrary limita-
tions; clearly identify any limita-
tions on internal capacities

4.1.9 3.7.2.4 Linker - 3.2.5
LINKING and LOADING REQUIREMENTS
facilities shall adhere to rules
and specifications contained in
language manuals

4.1.10 3.7.2.4 Compiler - Appendix D
Ada Program Library as specified
in language manuals

4.1.11 3.7.2.2 CM -3.2.5
project/Configuration Management KDBS 3.2.5
facilities 3.3.1

3.3.5

4.1.11.1 3.7.2.1 KDBS - 3.2.5

Must provide the following reports: 3.7.2.2 3.3.1
Configuration Composition 3.3.2

Report iCM - 3.2.5
Attribute Report toACLI - Command
Paraition Report Utilities

Attribute Select Report

4.1.11.2 13.7.2.1 KDBS - 3.2.5
Summary reports based on :3.7.2.2 - 3.3.1
combinations of attribute, - 3.3.2

partition, configuration, or - 3.3.5
version qualifier CM - 3.2.5

ACLI - Command

Utilities

.1 .CM 11

a a

PHASE I SOW REQUIREMENTS A - SPEC B5 - SPEC

4.1.11.3 3.7.2 Compiler - 3.3.15
MAPSE shall include a mechanism for 1 Linker - 3.2.5
automatic stub generation. MAPSE 3.3.2.3
shall store source code and
maintain pertinent information for
the stub

4.1.12 g3.71.2 KDBS -3.25.6

High level I/O will be an extension 3.7.1.1 - 3.3.4
of or alternative to package 3.7.1.1
specified in the Ada Reference 3.5.1.3
Manual

4.1.13 3.1.5.3 KFW - 3.3.1
Specify and include in design - 3.3.9
terminal interface routines for - 3.4.1.2.8
batch and online keyboard terminals
required for Phase II

4.1.14 3.7.1.1 KFW - 3.2.5
1 Identify, specify and design any 3.1.5.3 - 3.3
additional host dependent programs
necessary to implement MAPSE on

1 IBM and Interdata computers

CM- 12

Volume 3

COMPUTER PROGRAM DEVELOPMENT SPECIFICATION

(TYPE B5)

COMPUTER PROGRAM CONFIGURATION ITLM

APSE Coimmand Language Interpreter

Prepared for

Rome Air Development Center

Griffiss Air Force Base, MY 1314 41

Contract No. F30602-80-C-0292

Vol 3

TABLE UF CObTENTS
Vol 3
Page

Section 1 - Scope .. 1-i

1.*1 Identification 1-1
1.2 Functional Summary ... 1-1

Section 2- Applicable Documents 2-1

2.1 Program Definition Documents 1
2.2 Inter-Subsystem Specifications 2-1
2.5 Military Specifications and Standards 2-14
2.4 Miscellaneous Documents 21

Section 2 Requirements..................................... l

3.1 Introduction... 3-1
3.1.1 General Description....................................... 3-1
3.1.2 Peripheral Equipment Identification............... 3-1
3.1.3 Interface Identification............................... 22
3.2 Functional Description................................. 3-2
3.2.1 Equipment Description................................ -
3.2.2e Computer Input/Output Utilization........................... -3
3.2. Computer Inferface Block Diagram 5-
3.2.4 Program Interfaces 0................................. 3-3
3.2.5 Function Description 2,-b
3.3 Detailed Functional Requirements............................ 3-t
3.3.1 Scanner ... 3 -7
3.3.2 Parser.. 3-9
3.3.3 Interpreter 3-10
3.23.4 Conmmand Utilities................. 3-10
3.4 Adaptation 3 -11
3.4.1 General Environment........... 3-1 1
3.4.2 System Parameters..................................... 3-11
3.4.3 System Capacities 3,-1 1
3.5 Capacity .. 3-11

Section 4 -Quality Assurance Provisions........................... 4-1

4.1 Introduction 4-1
* ~4. 1.*1 Subprogram Testing. 4-2

4. 1.2 Program (CPCI) Testing............................. 4-2
4.1.3 SysmItegrtin Tesig......o................... 4-3

* 4.2 Test Requirements. 4-23
4.2.1 Analysis of Algorithms * 0 4-4
4.2.2 Formal Review ofTest Dts 4-4
4.3 Acceptance Testing. .. * 4-5 -

Vol 3

TABLE OF CONTENTS (cont.)

Page

Section b - Documentation 5-1

5.1 General *...5-1
5.1.1 Computer Program Development Specification 5-1
5.1.2 Computer Program Product Specification..................... 5-1
5.1.3 Computer Program Listings 5-1
5.1.A4 Maintenance Manual .. 5-2
5.1.5 User's Manual ... 5-2
5.1.6 Rehostability Manual...... 2

5o.7 ACL Reference Manual o...............o......o.....o..........3-2
5.1.8 MAPSL Tools Reference Handbook................. 3-2
5.1.9 ACL Validation Test Set Manualo......o........................5-3

iv

SECTION 1 - SCOPE

1.1 IDENTIFICATION

This document presents the Computer Program Development Specification (Type

B5) for the Computer Program Configuration Item (CPCI) known as the Ada

Programming Support Environment (APSE) Command Language Interpreter (ACLI).

This specification establishes the performance, design, and test

requirements for the ACLI.

1.2 FUNCTIONAL SUMMARY

The ACLI is a part of the MAPSE tool set and is responsible for interpreting

the APSE Command Language (ACL). The ACLI is oriented for interactive use,

and provides the user flexible, powerful capabilities for interacting with

the process management and data base facilities of the KAPSE. ACL is a

command programmifto -uage, combining features commonly found in both

command languages Algorithmic programming languages. The Debugger

executes as par& - * ACLI, and allows users to monitor the execution of

Ada programs into- -e ely.

Vol 3

SECTION 2 - APPLICABLE DOCUMENTS

The following documents are applicable to this specification.

2.1 PROGRAM DEFINITION DOCUMENTS

1. Reference Manual for the Ada Programming Language, July 1980.

2. Requirements for Ada Programming Support Environment, STONEMAN, February

1980.

3. Statement of Work, Contract No. F30602-80-C-0292, 26 March 1980.

2.2 INTER-SUBSYSTEM SPECIFICATIONS

4. System Specification for the Ada Integrated Environment.

5. Volume 1, Computer Program Development Specification for CPCI KAPSE

Framework.

6. Volume 2, Computer Program Development Specification for CPCI KAPSE Data

Base System.

7. Volume 4, Computer Program Development Specification for CPCI APS

Configuration Management System.

8. Volume 8, Computer Program Development Specification for CPCI APSE

Debugger.

2.3 MILITARY SPECIFICATIONS AND STANDARDS

9. MIL-STD-483, Configuration Management Practices for Systems, Equipment,

Munitions, and Computer Programs, 1 June 1971.

10. MIL-STD-490, Specification Practices, 30 October 1968.

2.4 MISCELLANEOUS DOCUMENTS

11. Aho, A. V., and J. D. Ullman, The Theory of Parsing, Translation, and

Compiling, Vols. I and II, Prentice-Hall, 1972.

12. Fischer, C. N., D. R. Milton, and S. B. Quiring, Efficient LL(1) Error

Correction and Recovery using only Insertions, Acta Informatica, 13,

1980.

Vol 3

2-1

SECTION 3 - REQUIREMENTS

3.1 INTRODUCTION

This section provides the general description, identifies the external and

internal interfaces, and presents the functional requirements and internal

characteristics of the ACLI.

3.1.1 General Description

The ACLI is an Ada program that interprets the ACL (the ACL Reference Manual

is supplied as Appendix A to this specification). ACL is designed for both

interactive and batch use, and is both a programming language and a command

language. As a programming language it provides string-valued variables,

expressions, statements, control-flow constructs, and subprograms. As a

command language it provides a flexible user interface to the process

management and data base facilities of the Kernel APSE (KAPSE). In

addition, the Debugger executes as part of the ACLI, enabling users to

interactively monitor the execution of Ada programs. The specification for

the Debugger is provided in [7].

The ACLI executes at the APSE process level (see [52), and not as part of

the KAPSE. The programming language constructs of ACL are interpreted

directly within the ACLI. For the command language constructs, the ACLI

issues calls, on behalf of the user, to the appropriate subprograms provided

in the KDBS Utility Package, the Aoa Run-time Support Package, and the KFW

Interface Package ([5), [6]).

3.1.2 Peripheral Equipment Identification

The ACLI always reads from and writes to KAPSE data base objects. These

objects may represent interactive terminals, host system files, or other

host system devices. The ACLI must know whether it is connected to an

interactive terminal in order to permit prompting. Otherwise, the ACLI has

no knowledge of terminal characteristics, these are managed by the Ada

Standard I/O Package and the low-level device handlers.

Vol 3
3-1

3.1.3 Interface Identification

The ACLI uses the facilities of the Ada Standard I/O Package and the KDbS

Utility Package provided by the KDBS [6), and of the KFW Interface Package

provided by the KFW [5]. The Ada Standard I/O Package provides the

functions required to perform Ada I/O, the KDBS Utility Package provides the

functions required to manipulate data base objects and their attributes, and

the KFW Interface Package provides the functions required to start and

interact with other APSE processes.

The ACLI is initiated by the KFW Logon Process whenever that process

performs a logon sequence for a user and the ACLI is specified in the user's

entry in the password file as the initial program. The ACLI may also be

invoked by any APSE process. However, within the MAPSE tool set, only the

Configuration Manager [7) and the ACLI itself invoke the ACLI. The

Configuration Manager invokes the ACLI in order to process object derivation

rules. The ACLI invokes a separate instance of itself in order to process

command language subprograms.

Through the KFW Interface Package, the ACLI invokes other APSE programs.

These include system tools as well as user programs. There is another set

of facilities, called Command Utilities, which provide the user access to

data base and process control functions at the command language level, and

include facilities for report generation. The Command Utilities are

distinct Ada subprograms, and are documented as part of the ACL Reference

Manual. Those Command Utilities that may be included in command "pipelines"

[Appendix A, Chapter 4) will execute as separate APSE processes. The

Command Utilities that affect the execution environment of the ACLI will

execute as part of the ACLI process.

3.2 FUNCTIONAL DESCRIPTION

This paragraph describes the functions of the ACLI, the program and

equipment relationships and interfaces identified above, and the

input/output utilization.

Vol 3
3-2

3.2.1 Equipment Description

The ACLI is designed to be highly portable, and will execute on both the IBM

VM/370 and the Interdata 8/32. The particular character sets accepted by

the ACLI may be extended to include host-dependent characters. Also

host-dependent is a required user-activated mechanism, such as a break, that

will effect a user-generated process interruption. However, the

host-dependent characteristics of this mechanism will be handled by the

terminal handlers and are unknown to the ACLI.

3.2.2 Computer Input/Output Utilization

The ACLI reads from and writes to KAPSE data base objects. As indicated in

Paragraph 3.1.2, these objects may identify interactive terminals, host

files, or other host devices. The interactive terminal interface is

provided to support interactive users, the host file and host device

interfaces are provided to support noninteractive batch (or background)

execution of the ACLI. The only functional difference between interactive

and batch execution of the ACLI is the prompting function, which is enabled

for interactive use and disabled for batch use.

3.2.3 Computer Interface Block Diagram

See Figure 3-1.

3.2.4 Program Interfaces

The interfaces between the ACLI and the other system components include the

invocation interface to invoke the ACLI from other APSE programs (including

other MAPSE tools); the KAPSE virtual interface to access the underlying

KAPSE facilities; and the Debugger Interface to call the Debugger, which is

a subprogram of the ACLI.

3.2.4.1 Invocation Interface

On invocation, the ACLI is passed an ACL command string to interpret, the

Vol 3
3-3

- - . . '__ # L :. . L. . • , j ' W I

MAPSE PROCESS LEVEL. KERNEL PROCESS LEVELI
t~ow
LEVEL

KDB KOSS

CONIF"RATPROCES ACESUTTIBTE

COMPILOLEER

LINKAEORRERFIATO

REDUESR DIRECTO T MOS

L----------------------------
INTERFACESA

Figure~ROES 3-ADntMacIDaga

Vol 3IPTCE
DEBUGER EENT MNI-O

name of an ACL file to interpret, or neither, in which case the standard

input file will be interpreted. The ACLI is specified as a function:

function ACLI (OPTIONS : in STRING :"

CMDSTRING : in STRING

ACL FILE NAME : in STRING :"

return RETCODE;

The ACLI returns a value of type RETCODE, which is an enumerated type

defined in the KFW Interface Package.

The actual invocation of the ACLI is through the Start-Process or

Overlay_Process functions, which are also defined in the KFW Interface

Package:

StartProcess("ACLI",(arguments))

OverlayProcess("ACLI",(arguments))

The arguments may include: "OPTIONS=option-string, "CMDSTRING=cmd-string",

and "ACLFILENAME=acl-file-name". The latter two arguments may not both be

specified.

Invocation of the ACLI is permitted from any MAPSE program. In addition the

ACLI may be invoked by a KAPSE Framework (KFW) Logon Process whenever a

logon sequence is performed for a terminal and the ACLI is specified as the

initial program in the user's entry in the password file.

The ACLI executes with both its real and effective user and group ids set by

the invoking environment. Thus the ACLI enjoys no special privileges and

executes as an ordinary APSE program.

3.2.4.2 KAPSE Virtual Interface

The KAPSE virtual interface consists of the KFW Interface Package, Ada

Run-time Support Package, and KDBS Utility Package. The ACLI uses the full

capabilities of the KFW Interface Package to create, suspend, and terminate

processes, and to determine the status of active processes. The detailed

specification of this package is provided in [51.

Vol 3

3-5

'?I

The Ada Run-time Support Package includes both tasking support and I/O

support functions. The ACLI uses tasking support for its own internal

tasking, and I/O support to perform Ada I/O. The KDBS Utility Package is

used to manipulate KAPSE data base objects and their attributes. The

detailed specification of these packages is provided in [6].

3.2.4.3 Debugger Interface

The Debugger executes as a subprogram of the ACLI and is invoked as a result

of the ACLI encountering a Debugger directive:

Debugo; - to enter the Debugger subprogram

Debug(processid); - to enter the Debugger subprogram and

- indicate the process to debug

3.2.5 Function Description

The purpose of the ACLI is to interpret ACL commands. As indicated in

Paragraph 3.2.4.1, ACL commands may be supplied as an argument to the

invocation of the ACLI, in a KAPSE data base object named in the invocation

of the ACLI, or most commonly from the standard input file. The semantic

interpretation of ACL syntax is specified in the ACL Reference Manual. The

remainder of the present specification will concentrate on the organization

of the ACLI itself.

While the ACL provides a reasonably powerful programming language, it is

especially geared toward providing a flexible command language for process

handling. As a programming language, the ACLI interprets a variety of

algorithmic programming contructs. As a command language, the ACLI calls on

the KFW to create processes on behalf of the user, pass arguments to these

processes, and receive out arguments and return values. The ACLI is

responsible for setting the Standard Environment for invoked processes,

permitting the Standard Input, Output, and Error files to be redirected

according to the user's specifications. In addition, a number of Command

Utilities are provided to interact with active processes.

Vol 3
~1 3-6

The ACLI operates as a conventional language interpreter. The functionality

of the ACLI is factored among three phases: lexical analysis (Scanner),

syntactic analysis (Parser), and interpretation (Interpreter). The data

flow structure of these phases is provided in Figure 3-2. These phases will

be detailed in Paragraph 3.3 below.

ACL
COMMANDS PARSA INTERETER

&
DEBUGGER
DIRECTIVES

KAPSE VIRTUAL
DEBUGER KPW INTERFACE
DE~uGG IKFWINTERFACE PACKAGE)

IADA RUN-TIME SUPPORT PACKAGE)
(KDS UTILITY PACKAGE

Figure 3-2. ACLI Phases

3.3 DETAILED FUNCTIONAL REQUIREMENTS

Functional requirements are provided for the Scanner, Parser, and

Interpreter.

3.3.1 Scanner

The Scanner, using Ada standard I/0, reads ACL commands from either the

Standard Input File, an ACL subprogram object, or from a user profile

object. The Scanner transforms these commands into a sequence of lexical

tokens. In addition, the Scanner is responsible for fielding attention

interruots that may be sent by an interactive user.

3.3-.1.1 Inputs

Although it may be invoked by other APSE programs or system tools (the

Configuration Manager, Configure, in particular), the ACLI is usually

invoked by the KFW Logon Process. In the usual case, the ACLI is invoked

without the CMDSTRING or ACLFILENAME arguments being supplied, so input

Vol 3

3-7

is taken from the standard input file that is set in the Standard

Environment of the ACLI process. This file will normally be a terminal, in

which case the ACLI will execute interactively. If arguments are supplied

to the ACLI, commands will be read from the CMD STRING or the data base

object named by ACLFILENAME. In this case, the ACLI will not interact

with the user.

The Scanner must also process input arising from command substitutions that

are generated by the Interpreter. Such input will be inserted by the

Interpreter at the appropriate point in the normal input (see Paragraph 4.3,

ACL Reference Manual).

The input must have the ACL syntax specified in the ACL Reference Manual.

The Scanner is responsible for detecting lexical errors, the Parser for

detecting syntactic errors.

3.3.1.2 Processing

Lexical analysis is performed by a simple, table-driven, finite-state

recognizer. Algorithms for such recognizers are well known and simple to

implement.

The Scanner also provides a task entry for the attention interrupt that may

be directed by the user to the ACLI process. Upon receipt of the interrupt,

any child processes will be suspended, and any ACL loops or inline

subprograms will be exited. If the ACLI is executing interactively, it will

prompt and be prepared to receive input from the terminal. If not, the ACLI

will terminate.

Because the Scanner and Parser operate logically as coroutines, each is to

be defined as an Ada task. Thus the Scanner performs as a producer task,

generating token pairs for a consumer task, the Parser. The Scanner must

also recognize which tokens constitute Debugger directives, these tokens

will be parsed separately by the Debugger task.

Vol 3
3-8

3.3.1.3 Output

The output of the Scanner is a stream of (token number, value) pairs. The

token number is of enumeration type, and identifies the class of the token.

The value is the character string that was the source representation of the

token.

In interactive mode, the Scanner will also issue a prompt string to the

user's terminal whenever the Scanner is prepared to accept input. The

prompt string will be taken from the environment variable %PROMPT.

3.3.2 Parser

The Parser performs a syntax-directed translation from the stream of (token,

value) pairs supplied by the Scanner into a syntax tree suitable for

interpretation by the Interpreter.

3.3.2.1 Inputs

The input to the Parser is a stream of (token, value) pairs. As indicated

above, the Scanner and the Parser operate as producer and consumer tasks

respectively.

3.3.2.2 Processing

Parsing will be accomplished with the Strong LL(1) algorithm. The LL(1)

technique provides small, efficient, table-driven parsers. In addition, the

FMQ error-recovery algorithm will be used to generate high-quality error

messages for syntactic errors.

The Parser will prepare a syntax tree on a per-statement basis. That is, a

tree is sent to the Interpreter for interpretation only when the tree

comprises a complete statement. Note that this implies that compound

statements (if, case, and loop statements) must be completely parsed before

they are interpreted.

There is one significant exception to the above rule. Substitutes (see

Appendix A) are parsed and interpreted as soon as they are encountered in

the input stream. Thus a substitute appearing in a loop statement will be

evaluated exactly once, regardless of the number of times the loop is

traversed.

Vol 3
3-9

fa'-

3.3.2.3 Outputs

The output of the parser is a sequence of syntax trees. Each tree

represents a complete statement (or substitute, see above) in a form

suitable for interpretation by the Interpreter. The detailed design of the

tree format will be provided in the C-5 Specification.

3.3.3 Interpreter

The Interpreter interprets, or "executes", the syntax trees provided by the

parser. The interpretation of each syntactic construct is fully specified

in the ACL Reference Manual.

3.3.3.1 Inputs

The input to the Interpreter is a syntax tree generated by the Parser The

Interpreter is invoked once per tree.

3.3.3.2 Processing

The Interpreter traverses the syntax tree, and performs operations

corresponding to the traversed syntactic constructs. These operations are

detailed in the ACL Reference Manual.

The Interpreter maintains a symbol table containing the values for all

command language variables. The symbol table is "flat", because there are

no scoping rules restricting the visibility of variables in ACL. Variables

are declared when they are used, and they may possess only two kinds of

values: strings, and aggregates of strings.

3.3.3.3 Outputs

The chief outputs of the Interpreter consist of calls through the KAPSE

virtual interface to the process management functions of the KFW and the

data base functions of the KDBS. The Interpreter also manipulates the input

buffers of the Scanner to insert the values returned by command substitution.

3.3.4 Command Utilities

The Command Utilities are logically separate programs. They may be

implemented either in Ada or in ACL. Those utilities that affect the

execution state of the ACLI will be implemented within the ACLI as

Vol 3

3-10

N -

subprograms. All other Utilities may appear in command pipelines and are

invoked as separate processes.

The Command Utilities make available to the ACLI user the applicable

functionality provided by the KFW Interface Package and the KDBS Utility

Package. Of particular interest are the Find Object and Read Attribute

Value Utilities, which can be combined to generate reports.

3.4 ADAPTATION

This section describes any adaptation that might be required to rehost the

ACLI.

3.4.1 General Environment

On some hosts, the user interface of the ACLI will be limited to half-duplex.

3.4.2 System Parameters

The number of processes that a single user can have active may be limited on

particular hosts.

3.4.3 System Capacities

The memory allocated to the ACLI on particular hosts may limit the size and

depth of nesting permitted for compound statements in ACL.

3.5 CAPACITY

Not applicable.

Vol 3
3-11

SECTION 4 - QUALITY ASSURANCE PROVISIONS

4.1 INTRODUCTION

This section contains the requirements for verification of the performance

of the APSE Command Language Interpreter (ACLI). The test levels,

verification methods, and test requirements for the detailed functional

requirements in Section 3 are specified in this section. The verification

requirements specified herein shall be the basis for the preparation and

validation of detailed test plans and procedures for the ACLI. Testing

shall be performed at the subprogram, program (CPCI), system integration,

and acceptance test levels. The performance of all tests, and the

generation of all reports describing test results, shall be in accordance

with the Government-approved CPDP and the Computer Program Test Procedures.

The verification methods that shall be used in subprogram and program

testing include the methods described below:

1. Inspection - Inspection is the verification method requiring visual

examination of printed materials such as source code listings, normal

program printouts, and special printouts not requiring modification of

the CPCI. This might include inspection of program listings to verify

proper program logic flow.

2. Analysis - Analysis is the verification of a performance or design

requirement by examination of the constituent elements of a CPCI. For

example, a parsing algorithm might be verified by analysis.

3. Demonstration - Performance or design requirements may be verified

by visual observation of the system while the CPCI is executing. This

includes direct observance of all display, keyboard, and other

peripheral devices required for the CPCI.

4. Review of Test Data - Performance or design requirements may be

verified by examining the data output when selected input data is

processed. For example, a review of hardcopy test data might be used to

verify that the values of specific parameters are correctly computed.

Vol 3
4-1

$I

5. Special Tests - Special tests are verification methods other than

those defined above and may include testing one functional capability of

the CPCI by observing the correct operation of other capabilities.

These verification methods shall be used at various levels of the testing

process. The levels of testing to be performed are described in the

paragraphs below. Data obtained from previous testing will be acceptable in

lieu of testing at any level when certified by CSC/SEA and found adequate by

the RADC representative. Any test performed by CSC/SEA may be observed by

RADC representatives whenever deemed necessary by RADC.

Table 4-1 specifies the verification method for each functional requirement

given in Section 3 of this specification. The listing in Table 4-1 of a

Section 3 paragraph defining a functional requirement implies the listing of

any and all subparagraphs. The verification methods required for the

subparagraphs are included in the verification methods specified for the

functional requirement. Acceptance test requirements are discussed in

Paragraph 4.3.

4.1.1 Subprogram Testing

Following unit testing, individual modules of the ACLI shall be integrated

into the evolving CPCI and tested to determine whether software interfaces

are operating as specified. This integration testing shall be performed by

the development staff in coordination with the test group. The development

staff shall ensure that the system is integrated in accordance with the

design, and the test personnel shall be responsible for the creation and

conduct of integration tests.

4.1.2 Program (CPCI) Testing

This test is a validation of the entire CPCI against the requirements as

specified in this specification.

CPCI testing shall be performed on all development software of the ACLI.

This specification presents the performance criteria that the developed CPCI

must satisfy. The correct performance of the ACLI will be verified by

testing its major functions. Successful completion of the program testing

Vol 3
4-2

.......

Figure 4-1. Test Requirements Matrix

SECTION TITLE INSP. ANAL. DEMO. DATA. SECTION NO.

3.3.1 Scanner X X 4.2.1, 4.2.2

3.3.2 Parser X X 4.2.1,4.2.2

3.3.3 Interpreter X 4.2.2

3.3.4 Command Utilities X 4.2.2

that the majority of programming errors have been eliminated and that the

program is ready for system integration. The method of verification to be

used in CPCI testing shall be review of test data. CPCI testing shall be

performed by the independent test team.

4.1.3 System Integration Testing

System integration testing involves verification of the integration of the

ACLI with other computer programs and with equipment. The integration tests

shall also verify the correctness of man/machine interfaces, and demonstrate

functional completeness and satisfaction of performance requirements.

System integration testing shall begin in accordance with the incremental

development procedures as stated in the CPDP. Final system integration

shall occur subsequent to the completion of all the CPC1s comprising the

MAPSE system. Two major system integration tests shall be performed: one

for the IBM VM/370 implementation and one for the Interdata 8/32

implementation. The method of verification used for system integration

testing shall be the review of test data.

The test team shall be responsible for planning, performing, analyzing

monitoring, and reporting the System integration testing.

4.2 TEST REQUIREMENTS

Quality assurance tests shall be conducted to verify that the ACLI performs

as required by Section 3 of this specification. Table 4-1 specifies the

methods that shall be used to verify each requirement. The last column

refers to a brief description Of the specified types of verification as

given below. Test plans and procedures shall be prepared to provide details

Vol 3
4-3

regarding the methods and processes to be used to verify that the developed

CPCI performs as required by this specification. These test plans and

procedures shall contain test formulas, algorithms, techniques, and

acceptable tolerance limits, as applicable.

The Scanner and Parser shall be validated both by analysis of the

constituent algorithms and by formal review of test data. The Interpreter

and the Command Utilities shall be validated by formal review of test data.

In order to provide for program testing of the ACLI in advance of the

completion of the KFW and KDBS, a facility shall be provided to log rather

than execute all calls made on KFW and KDBS functions. This logging

facility shall be used to generate test output data from the test input

scripts. The test input scripts are a subset of those that will constitute

the ACL Validation Test Set described below in Paragraph 4.3. Validation

shall be by formal review of test data.

The ACL Validation Test Set shall be augmented with tests for validating

each interface described in Paragraph 3.2.4. A program shall be written to

execute the augmented test set automatically. Validation of the system

integration of the ACLI shall be by formal review of test data.

4.2.1 Analysis of Algorithms

The coded scanning and parsing subprograms shall be inspected to ensure that

they conform to provably correct algorithms that have appeared in the

literature (e.g., [113).

4.2.2 Formal Review of Test Data

Drivers shall be written to generate input data and to log output data.

Test input scripts and expected test output shall be developed by test

personnel in accordance with subprogram and program specifications. Testing

shall consist of comparing expected output data with test output data. To

minimize the effort required for developing drivers, a bootstrap approach

shall be taken. Thus an initial driver for the Scanner shall be provided,

the Scanner shall serve as the driver for the Parser, and the Scanner-Parser

shall serve as the driver for the Interpreter. Because the Command

Vol 3
4-4

Utilities require less complex drivers, independent drivers shall be

provided for them in order to facilitate parallel development.

4.3 ACCEPTANCE TESTING

An ACL Validation Test Set shall be prepared, consisting of a comprehensive

set of test scripts along with expected output for each script. Scripts

shall be provided to test all forms of each ACL construct specified in the

ACL Reference Manual (see Appendix A). Scripts shall be provided to test

each Command Utility separately, and where feasible, in combination.

Scripts shall be provided to test the invocation of the ACLI by the

Configuration Manager.

A program shall be written that will automatically execute the ACL

Validation Test Set and compare the expected output data with the test

output data. The output of this program will be a report documenting the

successful or unsuccessful execution of each script in the Test Set.

Successful execution of the entire Test Set shall constitute successful

completion of the acceptance test. The Test Set shall be included as part

of the Computer Program Test Procedures to be approved by the Government.

Vol 3
4-5

SECTION 5 - DOCUMENTATION

5.1 GENERAL

The documents that will be produced during the implementation phase in

association with the ACLI are:

1. Computer Program Development Specification (Type B5) - Update

2. Computer Program Product Specification

3. Computer Program Listings

4. Maintenance Manual

5. User's Manual

6. Rehostability Manual

7. ACL Reference Manual

8. MAPSE Tools Reference Handbook

9. ACL Validation Test Set Manual

5.1.1 Computer Program Development Specification

The final ACLI B5 Specification will be prepared in accordance with

DI-E-30139 and submitted 30 days after the start of Phase II.

5.1.2 Computer Program Product Specification

A Type C5 Specification shall be prepared during the course of Phase II in

accordance with DI-E-30140. This document will be used to specify the

design of the ACLI and the development approach implementing the B5

specification. This document will provide the detailed description that

will be used as the baseline for any Engineering Change Proposals.

5.1.3 Computer Program Listings

Listings that result from the final compilation of the accepted ACLI will be

delivered. Each compilation unit listing will contain the corresponding

source, cross-reference, and compilation summary. The source listing will

contain the source lines from any included source objects.

Vol 3

5-I

p....

5.1.4 Maintenance Manual

An ACLI Maintenance Manual will be prepared in accordance with DI-M-30422 to

supplement the C5 and compilation listings sufficiently to permit the ACLI

to be easily maintained by personnel other than the developers. The

documentation will be structured to relate quickly to program source. The

procedures required for debugging and correcting the ACLI, along with

debugging aids that have been incorporated as integral parts of the ACLI,

will be described and illustrated. Sample scripts for compiling ACLI

components, for relinking the ACLI in parts or as a whole, and for

installing new releases will be supplied.

5.1.5 User's Manual

A User's Manual shall be prepared in accordance with DI-M-30421, and will

contain all information necessary for the operation of the ACLI. Because of

the virtual user interface persented by the ACLI, a single manual is

sufficient for all host computers. Information relevant to specific hosts

will be contained in an appendix. A complete list of all ACLI diagnostic

messages will be included with supplemental information supplied to assist

the user in locating and correcting ACL errors.

5.1.6 Rehostability Manual

In accordance with R&D-137-RADC and R&D-138-RADC, a manual will be prepared

to describe step-by-step procedures for rehosting the ACLI on a different

computer.

5.1.7 ACL Reference Manual

A Reference Manual distinct from the User's Manual shall be prepared to

define the syntax and semantics of ACL. The Reference Manual will adopt the

form and level of presentation that were used in the Ada Reference Manual.

5.1.8 MAPSE Tools Reference Handbook

A MAPSE Tools Reference Handbook shall be produced containing syntax

diagrams for all command constructs.

Vol 3
5-2

'I
- ~ *.: * -..-

5.1.9 ACL Validation Test Set Manual

A manual shall be provided that describes the procedures for running the ACL

Validation Test Set. A machine-readable form of the ACL Test Set shall be

provided along with listings of each member of the Test Set.

Vol 3
5-3

• • • ", •.... - ,.. - -." . L 'dj.,. ,°" ', -:,v.2__.,,. 2 .. ,' - ,,• . ,

APPENDIX A

APSE COMMAND LANGUAGE

REFERENCE MANUAL

Vol 3ii _ _ _.

SECTION I - INTRODUCTION

The APSE Command Language (ACL) is a command programming language that

provides an interface to the MAPSE system. The primary function of ACL is

to provide a convenient user interface to the process-related facilities of

the MAPSE. ACL is processed by the ACL Interpreter (ACLI), which is a MAPSE

program. ACL contains a variety of Ada-like control-flow constructs, and

provides variables and parameter passing mechanisms. Thus ACL is itself a

programming language, but one that is specifically designed for process

management.

The ACLI is used almost exclusively to invoke other MAPSE programs. Many of

the commands are directives to the ACLI to initiate a named program as a

MAPSE process. A few commands are provided to alter the state of the ACLI

itself; these are executed entirely within the ACLI process. In addition.

the ACLI may, for efficiency, execute directly some commands that could also

have been implemented as separate programs.

Vol 3

A- I

SECTION 2 - LEXICAL ELEMENTS

2.1 CHARACTER SET

All ACL constructs may be represented with a basic graphic character set.

which is identical to the set used for Ada:

(a) upper case letters

ABCD EFG H I J KLMNOPQRSTUVWXY Z

(b) digits

0123 4 567 89

(c) special characters

"#&,() ,_./:;<> _ I

(d) the space-character

The character set may be extended to include further characters from the 95

character ASCII graphics set:

(e) lower case letters

ab c d e fgh i j kl mno pqr st uv wx y z

(f) other special characters

Except within character strings, any lower case letter is equivalent to the

corresponding upper case letter. A rule will be provided below for

transliterating unavailable special characters within strings.

Vol 3
A-3

MI

2.2 LEXICAL UNITS

Lexical units in ACL are expressed in an essentially free format. A

sequence of non-special characters (i.e, letters or digits) forms a word.

Words may be delimited by special characters (except for the underscore,

which is not a delimiter), spacecharacters, or horizontal tabs. A word may

also be a character string, which may contain escaped special characters

(see Paragraph 2.5). Each word must fit on a line, thus an end-of-line also

delimits otherwise contiguous words.

The following compound symbols are also delimiters:

=> .. := i= >= <= -> - > *>> ,< >1

2.3 IDENTIFIERS

Identifiers are used as reserved words, variables, and names. An identifier

is also a character string (see Paragraph 2.5). The apparently ambiguous

uses of identifiers are easily distinguishable in context.

identifier ::= letter { E underscore I letteror digit }

letter or digit ::= letter I digit

letter ::= uppercase letter I lowercase letter

Note that identifiers differing only in the use of corresponding upper- and

lower-case letters are considered to be identical. Underscores are treated

as part of the identifier, and are therefore significant.

Examples:

X X15 EXFLAG case

Exflag exflag ex flag Ada

Vol 3
A 4

L --A... .. _- !

2.4 NUMBERS

Numbers, or numeric literals are integers to which may be appended an

optional base. Numbers are also a special case of character strings (see

2.5).

number ::= decimal-number I based number

decimal number : := digit { [underscore I digit }

based number ::= base # based integer

base ::= decimal-number

basedinteger

extended-digit { [underscore] extended-digit }

extended digit ::= digit I letter

Isolated underscores may be inserted between adjacent digits to provide

readability, but they are not otherwise significant. For bases greater than

ten, the extended digits include the letters A through F, signifying 10

through 15 respectively.

Examples:

0 17 32_768 -- decimal integers

2#101111 2#10_1111 16#2F -- integers with value 47

2.5 CHARACTER STRINGS AND QUOTING

A character string is a sequence of zero or more characters.

character_string ::= " (character I " I character I character }

"" alone denotes the empty string. Character strings may contain special

characters that otherwise would possess a special meaning. Enclosing a

character string within double quotes (") prevents thi. special meaning from

being applied. In order to include the double quote itself within a string,

it must be written twice. Character strings that would otherwise be

construed as reserved words (see Paragraph 2.7) must also be quoted.

Vol 3

A-5

Z*1

1- ---

Examples:

""o-- empty string

anystring -- quoting not required

a " " "a" """" - four strings of length one

"a longer string" -- quoting required to preserve blanks

"if" -- quoting prevents interpretation as

-- a reserved word

2.6 COMMENTS

A comment begins with two hyphens and is terminated by the end of the line.

Comments have no effect on the interpretation of ACL, and are inserted

solely for human readability.

Examples:

-- this is a simple comment

if -- the hyphens and these words have no effect

-- comments split over two lines

- require additional hyphens

---- the first two hyphens start the comment

2.7 RESERVED WORDS

The identifiers listed below have a special meaning within the language and

are reserved.

and begin case do

else elsif end exit

for function if in

loop mod not null

or others out procedure

rem renames return then

when while xor

Vol 3
A-6

2.8 VARIABLES AND THE SUBSTITUTION RULE

A '%' character is used to distinguish ACL variables from other words.

variable ::= $ identifier

Variables appear in either a defining or an applied context. A defining

context is one that sets the value of a variable, while an applied context

is one that uses the value. The substitutionrule is fundamental to the

interpretation of ACL. The rule is that the ACLI, upon encountering a

variable in an applied context, replaces it with its value. This

replacement can be considered to be performed simultaneously for all such

variables in a statement.

Examples:

SExflag %a %X-1

2.9 OBJECT NAMES AND NAME EXPANSION

Names are provided to identify objects in the KAPSE Data Base.

name ::= directory [xidentifier I [' category] [qualifier I

directory ::x /] { [xidentifier /] }

category ::: xidentifier

qualifier ::= . branch [. version]

branch ::: xidentifier

version ::= ' I decimal number

xidentifier ::= xletter I xletter I digit I

xletter :: * I letter

The directory is optional. If absent, the current directory is prepended to

the name. The qualifier is also optional. If absent, the current branch is

appended to the name if the named object is an abstract object.

Vol 3

A -7

If a ." appears in an object name, the name represents a pattern that is

matched against Data Base object names. "*" matches any sequence (including

the empty sequence) of characters that may appear in an object, branch, or

version name. Note that "/, "1", and "." are not matched, since these

characters delimit the components of a name. The list of matched names is

sorted into lexicographic order and formed into an aggregate (see Paragraph

3.1.1).

Examples:

/USAF/RADAR/Track -- absolute pathname

Track/finder -- current directory will be prepended

-- to this

finder'XQT -- with category qualifier

finder'XQT.VM370 -- with category and branch qualifier

finder'XQT.VM370.6 -- with category, branch, and version

-- qualifier

finder.VM370 -- with only branch qualifier |

Track/ -- all objects in partition "Track"

Track/f* -- all objects in partition "Track"

-- whose names begin with "f"

Vol 3
A- 8

SECTION 3 - VARIABLES, TYPES, AND EXPRESSIONS

3.1 VARIABLES AND TYPES

As indicated in Section 2. all non-reserved identifiers are either variables

or object names, with variables being distinguished by an initial '%'.

Variables are declared and implicitly typed when they are first used. ACL

is essentially typeless, allowing only strings and simple aggregates.

3.1.1 Aggregates

An aggregate is a list of character-strings.

aggregate ::=

(characterstring { [,) character_string })

Note that the components of an aggregate may be separated by either commas

or spacecharacters.

Examples:

C 1, 2, 3)

C abc, def, ghi)

("f", "then", "else")

C A, 8#40)

3.1.2 Sliced Variables

A sliced variable denotes a sequence of consecutive components within a

variable that has a string or an aggregate value.

sliced variable ::= variable (discrete range)

discrete range ::= simple expression .. simple expression

I simple expression

Vol 3
A-9

- I.

The substitution rule replaces each sliced variable appearing in an applied

context with its value. The value of a sliced variable is an aggregate if

the range spans more than one component of an aggregate variable. If the

variable is a string, slices are used to denote substrings. If the range is

a single simpleexpression, then the slice denotes a single character of a

string variable, or a single component of an aggregate variable.

Examples:

%Plist(2..3)

%Xstring(l..19)

%stat array(14)

3.2 EXPRESSIONS

An expression is a formula that defines the computation of a value.

expression ::=

relation I and relation }

I relation {or relation}

I relation { xor relation I

I relation land then relation)

I relation (or else relation)

relation ::=

simpleexpression [relational-operator simpleexpression]

I simpleexpression L not I in aggregate

simpleexpression

[unaryoperator J term I adding_operator term }

term ::= primary { multiplyingoperator primary }

primary

characterstring I number 1 (expression)

I aggregate I variable I slicedvariable I pipeline

Since ACL is essentially a typeless language, overloading of operators is

not needed. Each operator will convert its operands, if necessary and if

possible, to conform to the required operation. Thus, for example, the

string "15" may appear as an operand to the string catenation operator as

well as to an adding operator.

Vol 3

A - 10

' i • I 1 L. . . -. 4 I1

Variables and pipelines (i.e. program invocations, see Paragraph 4.2) may

syntactically appear as primaries. However, variables are replaced by their

values and pipelines are executed for their values before any operator may

be applied to them.

Examples of primaries:

blue -- character string

72 -- number

(%Status + 1) -- parenthesized expression

(bluegreen) -- aggregate

%Status -- variable

SProc list(1..4) -- sliced variable

echo(%Proc list) sort() -- pipeline

Examples of expressions:

blue - primary

%Status 2 -- term

-%Status -- simple expression

%Status + 4- simple expression

abc & def -- simple expression

%Status > 0 -- relation

blue in SProc_list -- relation

%Status and (2 not in SProc list) -- expression

(%Status + 1) * 2 -- expression

3.3 OPERATORS AND PRECEDENCE

The following operators are arranged in order of increasing precedence.

logicaloperator ::= and I or I xor

relational-operator ::= I /= I < I <= I > I >=

addingoperator ::= + - I &

unary operator ::: + I - I not

multiplying operator ::= * I / I mod I rem

Vol 3

A - 11

4WNW

The short circuit control forms "and then" and "or else" have the same

precedence as logical operators. The membership tests "in" and "not in"

have the same precedence as relational operators.

All operands of a factor, term, simple expression, or relation, and the

operands Of an expression that does not contain a short circuit control

form, are evaluated (from left to right) before application of the

corresponding operator. Operand evaluation includes the execution of a

function call appearing as a primary. The right operand of a short circuit

control form is evaluated if and only if the left operand has a certain

value (see Paragraph 3.3.1).

The preceding implies that within an expression, operators of higher

precedence are applied first, and within precedence levels operators are

applied in textual order from left to right.

Examples:

%A * B +%C -same as (%A *%B) +%Ct

%A < 3 and 4 = % same as (%A < 3) and (4 =%B)

not %A or %B -- same as (not %A) or %B

3.3.1 Logical Operators and Short Circuit Control Forms

The logical operators are applicable to Boolean values.

operator Operation

and conjunction

or inclusive disjunction

xor exclusive disjunction

Each logical operator attempts to interpret its operands as Boolean values.

The only operands that are interpreted as FALSE are the string "0" and the

aggregate with the string "0"1 as its only component. All other operands are

interpreted as TRUE (except for aggregates). Each logical operator produces

as its result either the string " 1" for TRUE, the string "0" for FALSE, or

an aggregate of these values.

Vol 3

A - 12

If both operands are aggregates, the operator is performed on matching

components, and the result is an aggregate as long as the longest operand.

The shorter operand is extended, before the operator is applied, with

sufficient FALSE values to match the length of the longer operand.

The short circuit control forms "and then" and "or else" are provided to

avoid the evaluation of the right operand In certain situations. If the

left operand of "and then" evaluates to FALSE, the right operand is not

evaluated and the value of the expression is FALSE. If the left operand of

"or else" evaluates to TRUE, the right operand is not evaluated and the

value of the expression is TRUE. If both operands are evaluated, "and then"

delivers the same result as "and" and "or else" delivers the same result as

"or". If applied to operands that are both aggregates, the short circuit

control forms will not prevent the evaluation of the right operand.

Examples:

%A or %B

%B and then (Blue in %A)

3.3.2 Relational and Membership Operators

The relational and membership operators operate on character strings and

aggregates and produce a Boolean value.

Operator Operation

1= equality, inequality

< , = > >=test for ordering

in .not in membership

The relational operators may be applied to operands that are both strings or

both aggregates. Strings are compared lexicographically according to the

ASCII character set. For strings that could be interpreted as numbers, this

comparison produces the same result that would be generated by a numeric

comparison, except when leading zeros are present. Thus leading zeros are

significant.

Vol 3
A - 13

TNo aggregates are equal if and only if their corresponding components are
equal. Aggregates of different length are therefore never equal. An
aggregate appearing as an operand to an ordering operator is treated as a
string that is the catenation of its components.

The membership test operators require a string as the left operand and an
aggregate as the right operand. The test is whether the left operand
appears as a component of the right operand.

Examples:

Blue =%Status

ERROR_3 in %Status list(l..4)

%A > 17

3.3.3 Adding Operators

Operator Operation

+ addition

subtraction

& catenation

Addition and subtraction are only defined for non-aggregate operands that
can be interpreted as numbers (see 2.4). Catenation accepts either two
strings or two aggregates as operands, and the result is of the same form.

Examples:

2 +e 17

%Status - 4

%A & "short string"

Blue & Green

Vol 3
A -14

If both operands are aggregates, the operator is performed on matching

components, and the result is an aggregate as long as the longest operand.

The shorter operand is extended, before the operator is applied, with

sufficient FALSE values to match the length of the longer operand.

The short circuit control forms "and then" and "or else" are provided to

avoid the evaluation of the right operand in certain situations. If the

left operand of "and then" evaluates to FALSE, the right operand is not

evaluated and the value of the expression is FALSE. If the left operand of

"or else" evaluates to TRUE, the right operand is not evaluated and the

value of the expression is TRUE. If both operands are evaluated, "and then"

delivers the same result as "and" and "or else" delivers the same result as

"or". If applied to operands that are both aggregates, the short circuit

control forms will not prevent the evaluation of the right operand.

Examples:

SA or %B

%B and then (Blue in %A)

3.3.2 Relational and Membership Operators

The relational and membership operators operate on character strings and

aggregates and produce a Boolean value.

Operator Operation

: , /= equality, inequality

< , <= , > , >= test for ordering

in , not in membership

The relational operators may be applied to operands that are both strings or

both aggregates. Strings are compared lexicographically according to the

ASCII character set. For strings that could be interpreted as numbers, this

comparison produces the same result that would be generated by a numeric

comparison, except when leading zeros are present. Thus leading zeros are

significant.

Vol 3
A - 13

3.3.41 Unary Operators

The unary operators are applied to a single operand.

operator Operation

+ identity

negation

not logical negation

The unary "+" and "-" are applicable only to non-aggregate operands that can

be interpreted as numbers (see Paragraph 2.41). The operator "not" when

applied to a non-aggregate produces the string with the Boolean value

opposite to that of the operand. However only the canonical strings "1" and

"0" are produced. Applying "not" to an aggregate produces an aggregate of

equal length with each component Possessing the Boolean value Opposite to

that of the corresponding operand component.

Examples:

- %Status

not (Blue =%Status)

3.3.5 Multiplying Operators

The multiplying operators are defined only for non-aggregate operands that

can be interpreted as nmbers

Operator Operation

a multiplication

/ division

mod modulus

rem remainder

Vol 3
A- 15

Two aggregates are equal if and only if their corresponding components are

equal. Aggregates of different length are therefore never equal. An

aggregate appearing as an operand to an ordering operator is treated as a

string that is the catenation of its components.

The membership test operators require a string as the left operand and an

aggregate as the right operand. The test is whether the left operand

appears as a component of the right operand.

Example s:

Blue = %Status

ERROR_3 in %Status_list(I..4)

%A > 17

3.3.3 Adding Operators

Operator Operation

+ additio~n

subtraction

& catenation

Addition and subtraction are only defined for non-aggregate operands that

can be interpreted as numbers (see 2.4I). Catenation accepts either two

strings or two aggregates as operands, and the result is of the same form.

Examples:

2 + 17

%Status - 4

%A & "short string"

Blue & Green

Vol 3
A - 14

3.3.4 Unary Operators

The unary operators are applied to a single operand.

operator Operation

+ identity

negation

not logical negation

The unary "+" and "-" are applicable only to non-aggregate operands that can

be interpreted as numbers (see Paragraph 2.4). The operator "not" when

applied to a non-aggregate produces the string with the Boolean value

opposite to that of the operand. However only the canonical strings "1" and

"0" are produced. Applying "not" to an aggregate produces an aggregate of

equal length with each component possessing the Boolean value opposite to

that of the corresponding operand component.

Examples:

+.4

- %Status

not (Blue = %Status)

3.3.5 Multiplying Operators

The multiplying operators are defined only for non-aggregate operan ds that

can be interpreted as numbers

Operator Operation

* multiplication

/ division

mod modulus

rem remainder

Vol 3

) * -. . -. - --

Division and remainder .re defined by the relation

A = (A/B)*B + (A rem B)

where (A rem B) has the sign of A and an absolute value less than the

absolute value of B. Division also satisfies:

(-A)/B -(A/B) A/(-B)

The result of the modulus operation is such that (A mod B) has the sign of B

and an absolute value less than the absolute value of B; in addition, this

result must satisfy the relation:

A = B'N + (A mod B)

for some integer value of N.

Examples:

2 0SStatus

SProc id list(1)/5

%A mod 3

SB rem 7

Vol 3
A - 16

- r .1
3..i1, -

SECTION 4 - PROCESS INVOCATION

4.1 PROCESS CALLS

processcall := programname ([actualparameterpart I)

program-name ".' name

actual parameterpart ::=

parameter association { , parameter association }

parameter-association ::=

[formal parameter => actual parameter

formal-parameter i'- identifier

actual-parameter ::=

expression I variable I sliced-variable

The programname must name an Ada program object (i.e, fully compiled and

linked), or and ACL program object

A process call is the mechanism that causes the execution of an Ada program

as a MAPSE process. When interpreting a process call, the ACLI, in order to

correctly interpret the actual parameters, first accesses the symbol table

associated with the named program. The arguments are then evaluated, and

the process is initiated with part of its standard environment having been

initialized to correspond to the invoking context (see Paragraph 4.2).

A process call may return a value. For Ada programs, the type of the value

returned is specified in the specification of the program name. The ACLI

will attempt to format the value returned into a character string or an

aggregate of character strings. This return value is not to be confused

with the standard output of the process. Ordinarily, return values are used

to return completion status codes to the ACLI. For processes that terminate

abnormally, exception names may be returned as the "return value". For

processes that do not return values, the ACLI will provide a return code of

"0" f'or any process that terminates normally, and "1" for any process that

terminates abnormally and does not return an exception name.

Vol 3
A- 17

~~~~~.. ."" ',.. .. . .



If the program__name names an ACL program instead of an Ada program, a

separate instance of the ACLI is created as a separate process (except for

"inline" invocation, see Paragraph 5.9). This process will take commands

from the named ACL program. Command language procedures will be fully

discussed in Section 6.

For both Ada and ACL programs, "in", "out", and "in out" parameters are

permitted. The form of the parameter is determined by the specification in

the called program. For "out" and "in out" parameters, the actual argument

must be a variable or sliced-variable.

Examples:

Ada(Track/prog' txt)

ACLI(CMD STRING=>"echo(%Proc list)")

ACLI(TRACK/Lprog' CMD)

LINK( (AprogBprog),PROG'XQT)

4.2 PIPELINES

A pipeline establishes the invoking context of a process

pipeline ::=

[ inputredirection I process_list [ outputredirection I

process_list ::=

process-call [ errorredirection I

{gprocess_a 11 errorredirection I }

inputredirection ::= -> objectname

outputredirection ::= -> objectname I ->> objectname

error-redirection ::= *> object name I *>> object name

Input redirection indicates that the standard input for the immediately

following process call is to be taken from the named object. If input

redirection is not specified, the standard input is the same as that for the

invoking ACLI process. Output redirection indicates that the standard

output for the immediately preceding process call is to be written to the

named object. If output redirection is not specified, standard output is

Vol 3
A- 18



the same as that for the invoking ACLI process. There are two forms of

output redirection: "->" indicates that the named object is to be truncated

to zero length before writing, "->>" indicates that the output is to be

appended to the named object. In both cases, the object is created if it

does not exist.

Except for the initial process, each process specified in a process call

list takes its standard input from the standard output of the previous

process. Each process may additionally have its standard error redirected

via an error redirection. Error redirection is similar to output

redirection, with "i>" indicated initial truncation of the object and "' "

indicating append mode. Processes within a list can be considered to

execute logically in parallel.

The value returned by a pipeline is the value returned by the last process

in the pipeline.

Examples:

list(Radar/Track) I sort()

list(Radar/Track) I sort() -> slist

list(Radar/Track) >> saved errors I sort()

slist -> copy(Radar/Track/Savelist)

4.3 COMMAND SUBSTITUTION

A pipeline can be invoked so as to return its standard output into the

command stream.

substitute ::: # pipeline # I If pipeline #'

With the non-quoted form, the ACLI will reformat the standard output of the

pipeline into a character string or an aggregate. The character string must

be an identifier or a number, the aggregate must contain only identifiers or

numbers. In the reformatting, sequences of spaces, horizontal tabs, and

newlines serve only to delimit the identifiers and numbers. This form of

the substitute may appear in the place of any identifier, number, or

aggregate.

Vol 3
A - 19

...................................... " * * i



The quoted form Of substitute preserves the standard output as a quoted

character string, and may appear in place of a quoted character string.

Command substitution is performed for each substitute appearing in a simple

statement (see Paragraph 5.1) before the statement is interpreted. Command

substitution is done before object name expansion (see Paragraph 2.9).

The substitute construct belongs properly to the "metasyntax" of ACL. Thus

"substitute" will not appear elsewhere in the syntactic description.

Examples:

f list(Track) f -- returns an aggregate consisting of the

-- members of partition "Track"

'f sort(old list'TXT) f' -- returns a quoted string containing the sorted

-- file

Vol 3

A - 20



SECTION 5 - STATEMENTS

A statement is the fundamental unit of interpretation for the ACLI. That

is, no portion of a statement is interpreted (except for command

substitution, see Paragraph 4.3)) until the entire statement is read by the

ACLI.

5.1 SIMPLE AND COMPOUND STATEMENTS - SEQUENCES OF STATEMENTS

A statement may be simple or compound. A simple statement contains no other

statements. A compound statement may contain simple statements or compound

statements.

sequence ofstatements ::= statement I statement }

statement ::=

simple_statement

I compound statement

simple statement ''-

null statement

assignment statement

pipelinestatement

exit-statement

return statement

inline statement

renames statement

compoundstatement ::=

if statement

I case statement

I loopstatement

null statement ::= null

Statements in a sequence are interpreted in succession. No portion of a

statement is interpreted until the entire statement is read by the ACLI.

Thus statements within a compound statement are not interpreted until the

Vol 3
A - 21



end of the compound statement is reached.

Interpretation of a null statement has no other effect than to pass on to

the next action.

5.2 ASSIGNMENT STATEMENT

An assignment statement defines the value of a variable.'

assignment --

variable := expression

I sliced-variable := expression

The expression may evaluate to a character string or an aggregate. Each

assignment constitutes a redefinition of the variable. Thus a variable with

a string value may be reassigned an aggregate value and vice versa.

For an assignment of an aggregate to a sliced variable, each component of

the aggregate is assigned to the matching component of the slice. The

length of the lefthand slice must be the same as the length of the righthand

aggregate. If the slice is of length one, then the righthand side of the

assignment may be either a single character string or an aggregate of length

one.

Examples:

%Status := 1;

%Status := Ada(Prog.VM370.2);

%Pl1st(1) := (Ada(Prog.VM370));

%altst(2..3) := (green~blue);

5.3 PIPELINE STATEMENT

A pipeline statement is used to invoke programs as processes.

pipeline statement ::= pipeline ; I ( pipeline ) ;

Unparenthesized invocation of a pipeline causes the ACLI to wait for

completion of the execution of the pipeline. A parenthesized pipeline will

Vol 3
A - 22

.~- . -.. -.



be executed asynchronously (i.e., the ACLI does not wait for the pipeline to

complete. The value returned by a parenthesized pipeline is an aggregate

containing the process__ids of each process in the pipeline. The value

returned from a pipeline executed as a statement will be discarded.

Examples:

list(Radar/Track) I sorto;

(list(Radar/Track) *>> saved errors I sorto) -> slist);

(Ada(Prog.OS32.17)):;

5.4 IF STATEMENT

An if statement selects for interpretation one or none, of a number of

sequences of statements, depending on the truth value of one or more

corresponding conditions.

if statement

if expression then

sequenceof statements

I elsif expression then

sequence of statements }

[ else

sequence_of statements ]

end if ;

For the interpretation of an if statement, the expression after the "if" and

the expressions after each "elsif" are evaluated in succession until one of

them evaluates to TRUE (see Paragraph 3.3.1). The corresponding sequence of

statements is then interpreted. If none of the expressions evaluates to

TRUE, the sequence of statements following the "else" is interpreted. If

none of the expressions evaluates to TRUE and the "else" is absent, then

none of the sequences of statements are interpreted.

Vol 3
A - 23

< . . . .. - " . .- . _ .1



Example s:

if Ada(Prog) /= ok then

echo("Unsuccessful execution");

if %alist(2) = green then

Ada(Prog);

elsif %alist(2) = yellow then

Link(Prog);

else

Prog(%alist);

5.5 CASE STATEMENT

A case statement selects for interpretation one of a number of alternative

sequences of statements, depending on the value of an expression.

case statement ::=

case expression is

{ when choice { I choice I => sequence of statements }

end case ;

choice ::= expression I others

Each alternative sequence of statements is preceded by a list of choices

specifying the values for which the alternative is to be selected. The

expression and each of the choices must evaluate to single character strings

(i.e, not aggregates). The choice others may only be given as the choice

for the last alternative, to cover all values not given in previous choices.

The values of the choices need not be determinable statically. Once the

expression is evaluated, the choices are evaluated in order until one of

them matches the value of the expression. The remaining choices are not

evaluated.

Vol 3

A - 24

Vl



Example:

Sstat := Ada(prog);

ease Sstat is

when ok =>

echo("no errors");

Link(Prog);

when warning =>

echo("warnings");

Link(Pro&);

when serious I fatal =>
I

echo("serious or fatal error, no link");

end case;

5.6 LOOP STATEMENT

A loop statement specifies that a sequence of statements is to be

interpreted repeatedly zero or more times.

loopstatement ''

[ loopidentifier : ] E iteration clause 3

basicloop E loop_identifier ]

iteration clause ::=

for loop_parameter in aggregate

I while expression

basicloop ::"
ia--

sequence of statements

end loop

loop-parameter variable

loop identifier ::= identifier

The optional loop identifiers appearing at the beginning and end of a loop

statement must be identical. If a loop identifier appears within a loop

statement (i.e, in a return or exit statement), then the identifier must

appear at the beginning and end of the loop.

Vol 3
A - 25

___ --



A loop statement without an iteration clause specifies repeated

interpretation of the basic loop. In this case the loop may be left only by

an exit statement, return statement, or goto statement.

The "for" iteration clause indicates that the loop parameter is to be

assigned the ith value of the aggregate for the ith iteration through

the loop. The loop is interpreted once for each value in the aggregate. If

the aggregate is empty the basic loop is not interpreted.

In a loop statement with a "while" iteration clauses, the expression is

evaluated and tested before each interpretation of the basic loop. If the

expression evaluates to TRUE the basic loop is interpreted, if FALSE the

interpretation of the loop is terminated.

Examples:

for %p in # list(Radar) #

loop

Ada($p);

end loop;

$i • 1;

while Ada(%plist(i)) = ok

loop

link(%plist(i));

$i := %i + 1;

end loop;

5.7 EXIT STATEMENT

An exit statement may cause the termination of a loop, depending on the

truth value of an expression.

exit statement : ::

exit C loop_identifier J [ when expression ]

The loop exited in the innermost loop unless the exit statement names the

loopidentifier of an enclosing loop, in which case the named loop is exited

(along with any enclosing loop inner to the named loop.

Vol 3
A - 26

•.0,*4



If an exit statement contains a when clause, the expression is evaluated and

loop termination occurs if and only if the truth value of the expression is

TRUE.

An exit statement may only appear within a loop, and a named exit statement

only within the named loop.

Example:

cloop: for Sp in # list(Radar) #

loop

exit cloop when Ada(%p) /: ok;

end loop cloop;

5.8 RETURN STATEMENT

A return statement terminates the interpretation of an ACL function or

procedure.

return-statement ::= return E expression ] ;

A return statement may only appear within a function or procedure body. A

return statement for a procedure must not include an expression.

Examples:

return 3

return green

return Ada(%p) ;

5.9 INLINE STATEMENT

An inline statement provides for inline expansion of command language

procedures.

inline statement ::=

mcl_programname ( [ actual_parameter part ] )

Vol 3
A - 27



The named program must be an ACL procedure. The procedure body is expanded

inline and is thus interpreted in the context of the present invocation of

the ACLI. This is to be contrasted with the call described in Paragraph

4.1, which required that a separate ACLI process be created to interpret the

procedure.

Example:

chgwpar("/Radar/Track/Sub2"); - chgwpar is an ACL subprogram that

-- assigns its argument to %CWP, this

-- assignment would take effect in the

-- current instance of the ACLI

5.10 RENAMING STATEMENT

A renaming statement is used to provide an alias for an identifier appearing

as a program name.

renames statement ::= identifier renames identifier ;

The identifier on the left will be considered to be an alias for the

identifier on the right, but only when the identifier serves as a program

name (see 4.1). The alias is valid when it is the value of a variable used

as a program name.

Examples:

adacompiler renames Ada;

1 renames list;

s renames sort;

Vol 3

A - 28



SECTION 6 - COMMAND LANGUAGE SUBPROGRAMS

An ACL subprogram defines a procedure or function to be interpreted by the

ACLI. Exactly one subprogram may appear in a data base object (file).

Invocation of the subprogram is indicated by naming the data base object

(see Paragraph 4.1).

6.1 SUBPROGRAM DECLARATIONS

A subprogram declaration defines a procedure or function.

subprogram-declaration ::

subprogramspecification is subprogram body

subprogramspecification ::=

procedure [ formalpart I

I function C formal_part )

formal-part ::=

( parameter-declaration { ; parameter-declaration } )

parameter-declaration ::=

variable I . variable I mode [ :: expression ]

mode ::= [ in) I out I in out

subprogrambody ::: sequence of statements

As indicated above, the name of the procedure or function is the name of the

containing data base object. Interpretation of a subprogram involves

parameter association (see Paragraph 6.2) and interpretation of the

subprogram body.

The subprogram specification must not contain any substitutes (see Paragraph

4.3).

Vol 3
A - 29

AP



6.2 PARAMETER ASSOCIATION

Actual parameters may be passed in positional order (positional parameters)

or by explicitly naming the corresponding formal parameters (named

parameters). For positional parameters, the actual parameter corresponds to

the formal parameter with the same position in the formal parameter list.

For named parameters, the corresponding formal parameter is explicitly given

in the call. Named parameters may be given in any order.

Positional parameters and named parameters may be Used in the same call

provided that positional parameters occur first at their normal position.

That is, once a named parameter is used, the rest of the call must use only

named parameters.

"In" and "in out" parameter declarations may provide a default expression.

This expression is to be assigned to the specified formal parameter if and

only if a corresponding actual parameter does not appear in the call.

Actual parameters may be omitted from a call if and only if the

corresponding formal parameter declaration provides a default expression.

In such a case the rest of the call, following any initial positional

parameters, must use only named parameters.

All parameters behave as local variables within the subprogram. When a

"return", or the last statement in the subprogram, is interpreted, the

values of all "out" and "in out" parameters are copied to their

corresponding actual parameters.

By convention, the value returned from a function invocation will usually be

interpreted as a "return" or "status" code. The ACLI will provide a return

code of "01" for procedures that terminate normally, and a "1" for procedures

that terminate abnormally and for functions that terminate before executing

a return statement.

Vol 3
A -30



Exampl.e:

The following is a subprogram, copar, to compile and link all objects

within a partition. It can be invoked by "copar(partition name)".

function(Spartition : In) is

for %i in # l1.st(%partition) #

loop

if ada(S) /a olc then

return "bad compile" & %i;

end loop;

%3 : link(# list(%partition) *,PAROUT);)
if %a = ok then

return success;

else

return "link failure";

Vol 3
A -31



ANNEX A - STANDARD ENVIRONMENT

Each process has a Standard Environment (including, for example, definitions

for Standard Input, Standard Output, Standard Error), and the ACLI is no

exception. Certain components of the environment are directly accessible in

ACL through preset variables. The ACL user is free to alter the values of

these variables at any time. The following environment variables are

defined:

%PATH - A list of partitions, delimited by colons

(":"), that are applied in order in searching

for an object that is specified with an

incomplete name. PATH is initialized to

":/mapse/bin", indicating that object names

are first looked for in the current partition,

and then in "/mapse/bin".

$CWP - The full path name of the current working

partition. CWP is initialized to the user's

"home" partition, which is found in the

Password Object [I.

%HOME - The "home" partition for the user, initialized

to the value found in the Password Object.

%TERM - The type of terminal for which output is to be

prepared. Of necessity, the permissable

values for TERM are dependent on the host

environment.

%CURBRANCH - The string to be used as the branch qualifier

when an unqualified name is specified for an

abstract object.

The items listed above will be included in the Standard Environment of any

process created by the ACLI. There is an additional ACL variable that is

strictly local to a ACLI invocation:

Vol 3
A - 32

.4



%PROMPT - The string that the ACLI will use to prompt a

user on an interactive terminal.

Vol 3
A - 33

ir4



ANNEX B - PROFILES

In each user's home directory there may exist an ACL object with the name

"PROFILE". When initially attached to an interactive terminal, the ACLI

will, if the "PROFILE" object exists, read and interpret the ACL statements

in that object before accepting input from the terminal.

This facility enables the user to alter the default Standard Environment by

setting the variables %PATH, %CWP, %HOME, %TERM, $CURBRANCH, and %PROMPT.

The user will often include a list of renaming statements to allow shortened

aliases of frequently invoked programs. While the foregoing is the typical

use for profiles, the PROFILE object may include any ACL statements.

I

Vol 3

A - 34



ANNEX C - COMMAND UTILITIES

While technically not part of the ACL syntax, there are a number of utility

programs that are essential to providing minimal command language

functionality. The Command Utilities are logically separate programs. They

may be written either in Ada or in ACL. Those Utilities that affect the

execution state of the ACLI will be implemented within the ACLI as

subprograms. All other Utilities may appear in command pipelines and are

invoked as separate processes.

The Command Utilities make available to the ACLI user the applicable

functionality provided by the KFW Interface Package and the KDBS Utility

Package. Of particular interest are the Find Object and Read Attribute

Value Utilities, which can be combined to generate a variiety of data base

reports.

Below is a list of the Command Utilities to be provided initially,

individual descriptions are on the following pages. Just as the Compiler,

Editor, Linker, Loader, and ACLI constitute only an initial set of System

Tools, so the following constitute only an initial set of Command

Utilities. All Command Utilities read from the Standard Input File, write

output to the Standard Output File, and write diagnostics to the Standard

Error File.

Vol 3

A - 35



COMMAND UTlLIILkS

Add Attribute-Value - adda Find Objects - fobj

Add Value - addv Group - group

Archive - archive Help - help

Branch Create Access - bca Link - ±ink

Branch Write Access - bwa List Access Rights - lacc

Change Value - chgv List Attributes - lattr

Copy - copy List Groups - lgrp

Create - create List Partition - list

Create Branch - createb List Processes - listproc

Create Group - cgrp List Versions - listv

Create Partition - cp Load Program - loadp

Date/Time - uate Print - print

Debug - debug Read Access Rights - racc

Delete Attribute - uela Release Process - relp

Delete Group - dgrp Read Attribute Value - roav

Delete Object - (l Set Accesb Control - sacc

Delete Partition - dlp Set Default Branch - sdefb

Delete Value - delval Suspend Process - susp

Echo - echo Terminate Process - termp

Vol 3

A - 36



Add Attribute-Value

This function adds an attribute with an initial value to an object in the

KAPSE data base. The user must have mod access to the object.

Calling Syntax:

adda ( object-name, attribute-name, attributevalue );

Arguments:

objectname - The name of the object in which the

attribute-value pairs is to be adueo.

attribute-name - The name of the attribute to be associated

with the object.

attribute-value - The initial value to be assigned to the

specified attribute.

Example:

adda ( IARGETPGM, SYSTEM, TANK-SYSTEM );

Vol 3
A -

'';7



Add Value

This function adds another value to an existing attribute of an object. The

user must have mou access to the object.

Calling Syntax:

addv (objectname, attributename, attributevalue );

Arguments:

object_name - The name of the object to which the

attribute value is to be added.

attribute-name - The name of the attribute to which the

value is to be auoed.

attribute-value - The value to be added to an existing

attribute.

Example:

addv ( RADARPUM, CONFLIST, SIGNALCEN );

Vol 3

A-

k .- . -



Archive

This function manipulates archive objects in the KAPSE data base. Archive

handles creating and listing archive objects, ana adding, replacing,

updating, and deleting the members of an archive object. An archive object

is created when an object is to be added or replaced and the specified

archive object does not exist.

Calling Syntax:

archive ( archive function, archiveobjectname, objectname );

Arguments:

archivefunction Indicates the type of archive function to

perform:

appeni - The specified object is to

be addea to the archive object.

delete - The specified object is to

be deleted from the archive object.

list - The membership list is to be

printec on Standard Output.

replace - The specified object is to

replace the member of the same name

in the archive object.

update - The specified object is to

replace the member of the same name

in an archive only when the specified

object is more recent than the

corresponditib member.

Vol 3
A -

1- /



archive_objectname - The name of the archive object. If it

does not exist in processing an append or

replace operation, the archive object is

createu.

objectname - The name of the object for which the

archive function is to be performeo.

Examples:

archive ( append, /USAF_PRUJ/Fi6_ARCHIVE, FibPGM );

archive ( list, /U6AFPROJ );

Vol 3
A - 40



Branch Create Access

This function adds or deletes the right to ada a branch to an abstract

object for a user or user group.

Calling Syntax:

bca ( object name, user-name, mode ),

bca ( objectname, group-name, mode);

Arguments:

obJect name - The abstract object to which branch create

permission is to be added or deleteu.

username - The user for whom branch create permission

is to be added or deleteu.

group_name - The group for which branch create

permission is to be adUed or deleted.

mode - "add" to add version permission, "del" to

delete version permission.

Examples:

bca(TARETPGM,fred,del);

bca (TARGET PGM,TESTTEAM,add);

Vol 3
A- 41



Branch Write Access

This function adds or deletes the right to add a version to a branch of an

abstract object for a user or user group.

Calling Syntax:

bwa ( objectname, username, mode )

bwa ( objectname, groupname, mode);

Ar guments:

objectbranchname - The object branch name to which version

permission is to be addeu or deleteu.

username - The user for whom version permission is to

be added or deleteu.

group_name - The group for which version permission is

to be added or deleteu.

mode - "add" to add version permission, "del" to

delete version permission.

Examples:

bwa(TARGETPGMfred,del);

bwa (TARGET_PM, TESTTEAM,add);

Vol 3
A - 42A



Change Value

This function changes the value of an attribute for a specified object in

the KDB. For most system-oefined attributes, Change Value may only be

executed by the System Administrator.

Calling Syntax:

chgv ( object-name, attributename, attributevalue );

Arguments:

objectname - The name of the object for which the

attribute vaiue is to be changeu.

attribute name - The name of the attribute whose value is

to be changeu.

attribute value - The new value to be assigned to the

attribute of the speci'ied object.

Example:

chgv ( TESTPGM, SYSTEM, PAYROLL);

Vol 3
A -4

N2



Copy

This function copies the informational contents of one object into another.

If the second argument names a partition object, an object of the same name

as the first is created in that partition if such an object does not exist.

Calling Syntax:

copy ( to objectname

copy ( fromobjectnarne, toobjectname

copy ( fromobjectname, to_partitionname )

Arguments:

from object name - The name of the object that is to be

copied. If not specifieu, the standard

input file is copied.

to-objectname - The name of the object to which the first

object is to be copied.

topartition name - The name of the partition containing the

destination object.

Example:

copy ( SUB_PGM, /NAVYPROJ/SUBSYSTEM );

copy (NEWSUUSYSTM);

Vol 3

A - 44

MM$13



Greate

The create function creates an object in a specified partition.

Calling Syntax:

create (objectname)

create (objectname, versiontype )

create ( object name, KEYED );

create ( objectname, KEYED, versiontype).

Arguments:

objectname The name of the object to be created. If

keyed is specifieu, the object will have

keyed access.

version-type the type of version control to be provided

for the object. If no value is specified,

the object will not be subject to version

control. The types of version control are:

cop - Indicates that copies of the

versions are to be kept.

delta - Indicates that delta

versioning is in effect for the

specified object.

Vol 3
A - 45

Mk=,



crm~eate /NAVY-PHOJ/SUB SYSTEM/SONARPGM. delta )

Vol 3
A - 46



Create branch

This function adds a branch to an abstract object.

Calling Syntax:

createb ( objectversionname, branch-name);

Arguments:

objectversionname The version at which a branch is to

be sprouted.

branch name The name of the branch to be sprouted.

Example:

createb ( TESTPGM.DEV.3, MEL);

Vol 3
A -41

":1 I



Create Giroup

This function creates a new user group.

Calling Syntax:

cgrp ( group name,)

Argumients:

group__name - The nane of the new group.

Example:

cgrp (TEST ThAN )

Vol 3
A- 4bjb



Create Partition

This function creates a KAPSE data base partition.

Calling Syntax:

cp ( partition-name )

Arguments:

partition name - The name of the partition to be created.

Example:

cp C/ARMYPROJ/TANKSYSTEM )

Vol 3
A - 49



This function retrieves the current date and time. The value returned from

the function is of the form: "m/dd/yy hh:mm:ss".

Calling Syntax:

dateo;

Example:

%a :~dateo;

Vol 3
A-



Debug

This is an internal ACL call that transfers control to the Debugger.

Calling Syntax:

debug(process-id);

debug()

Argumients:

process id - Identifies the process to be debugged. If

absent, the Debugger will request further

inform~ation.

Examples:

debugo;

debug(p4l7);

Vol 3
A -5

A--



Delete Attribute

This function deletes an attribute from an object.

Calling Syntax:

dela (object-name, attributename );

Arguments:

objectname - The name of the object whose attribute is

to be deletea.

attribute naie - The name of the attribute to be deleted.

Examples:

dela C TLSTPGM, SYSTEM );

Vol 3
A - 2



ADA INTEGRATED ENV IRONMENT 11 COMPUTER PROGRAM DEVELOPMENT SPEC -ETC(U)
DEC 81 F30602 80 C 0292

UNCLASSIFIED RADC-TR-81-364-PT- Z NL5lllllllllff



IIIII~2i~Iii25
BH~ ____________ IIIII~~

__ 1.8~flQ 1.25 __________ _________

>1
NC.. . . .



D)elete Uroup

T1his function deletes a user group.

Calling Syntax:

dgrp ( group_pne

Ar guments:

group__pame - The name of group to be deletea.

Example:

dgrp (USAFUROUP )

Vol 3
A-



Delete Object

This function deletes an object from the KAPSE data base.

Calling Syntax:

dl ( object-name )

Arguments:

object-name - The name of the object to be deleted.

Example:

dl C/hAVYPhiOJ/SUB SYSTEM/3UB PGN )

Vol 3
A-!)



Delete Partition

This function deletes a partition from the KAPSE data base.

Calling Syntax:

dip ( partition name );

Arguments:

partition-name - The name of the partition to be deleted

Example:

dip ( /ARMYPROJ/TANKSYSTEM );

Vol 3
A-

9..



IM"

Delete Value

This function deletes a value from a list of values for an attribute. This

function is not to be used in aeletinj$ attributes with a single value.

Calling Syntax:

delval ( object-name, attributename attributevalue );

Arguments:

object-name - The name of the object from which the

value of an attribute is to be deleted.

attribute-name - The name of the attribute from which a

value is to be deleteu.

attribute-value - The value of the attribute which is to be

ueleted.

Example:

delval (TESTPUM, CONF, PAYROLLPGM );

,
Vol 3 /
A- 56Ii



Echo

This function prints its argument.

Calling Syntax:

echo ( printstring );

Arguments:

printstring The string to be output to Standard Ouput.

Examples:

echo ( %A );

echo (abc);

echo ( "PRINT THIS STRINU" );

Vol 3
A -5



Find Objects

For a given partition, this function finds all the objects with attribute

values satisfying a specified boolean predicate.

Calling Syntax:

fobj ( partition-name, predicate, search );

Arguments:

partition name - The name of the partition to be searched.

predicate - A character string containing a boolean

expression with the following syntax:

expression

relation t and relation }

relation { or relation }

relation t xor relation }

( expression )

relation ::=

attribute name = value

attribute-name /= value

value in attributenawe

value not in attributename

value ::-

characterstring

search A value of "yes" or "no". This indicates

whether subpartitions of the specified

partition are to be searched as well.

Vol 3

L. .. I " , a- ; '.. . . . . . . . . . .. -- " -. .



Example:

tobj ( NAVYPROJ, 't ytemsub or systemmdest", yes )

fobj ( NAVYPRUJ, "CoAIh it, cf#4_list", no

Vol 3
A - 59



Group

This function can add to, delete from, or list the membership of a user

group.

Calling Syntax:

group ( action, group_name, user namelist );

Arguments:

action The type of function to be performed on

the group:

a - The user names are to be added

to the group.

d - The user names are to be deleted

from the group.

1 - The list of members of the group

is to be printed.

group._name - The name of the user group.

,user namelist - A character string containing a

blank-aelimited list of user names.

Example:

Add a user to a defined group:

group ( a, TEST_TEAM, DAVE );

group ( d, TESTTEAM, "Bill Mary" );

group ( 1, TESTTEAM );
Vol 3

A - bO



Hielp

This function obtains and prints information about the APSX system4

functions. This information is in the form of an explanation of the usage

of the specified function of the APSE.

Calling Syntax:

help ( object base name)

Arguments:

object-base-name - An object with a name of the form

object-base-riameOHL1P is searcheo for

and printed

Examople:

help (dl )

Vol 3
A -61



Link

This function creates a link in the current working partition to the named

object.

Calling Syntax:

link(link-name, object-name);

Arguments:

link-name - The name of the link.

object-name - The full pathname of the object to which

the link is created.

Example:

link(TSTPUM,/USAF/RADAR/TRACK/TEST/TST PGM);

Vol 3
A 02

. .. .......



List Access kights

This function lists the access control attribute for a specified object in

th,' KDB.

Calling Syntax:

lacc ( objectname

Arguments:

obJectname - The name of the object for which the

access control attribute is to be listeo.

Example:

lacc ( TEST/SUb-SYS );

Vol 3
A -

_ _ fE



List Attributes

This function lists the attribute names of a specified object in the KAPSE

data base.

Calling Syntax:

lattr ( objectname )

Arguments:

object-name - The name of the object for which the

attribute names are to be listeu. Note

that the values of the attributes are not

listed.

Example:

lattr C/NAVYPihOJ/SUBSYS/SONARPGM )

Vol 3

A - 6~4

tor



List Groups

This function lists all user 6roups. The individual members of the groups

are not listen. (see the Group function for this facility).

Callin6 Syntax:

lgrp 0

Exam~ple:

lgrp 0

Vol 3

SA- 65



List Partition

This function lists the members of a partition in the KAPSE data base.

Calling Syntax:

list ( partition-name )

Arguments:

partition-name - The name of the partition to be listea.

E xamnple:

list (/USAF PiiOJ/RAD)AR )

Vol 3
A - (j6



List Processes

This facility is provided to list information about all processes that are

descendants of the current instance of the ACLI. Information listea

includes process id, corresponding Load Object name, and status.

Calling Syntax:

listproc (;

Arguments:

None.

Example:

listproc );

Vol 3
A - 67

/c



List Versions

This function generates a listing identifying all versions, along with

associated information, for an abstract object.

Calling Syntax:

listv (object-naw~e);

Arguments:

object-narre - The abstract object for which the

versiun information listing is to be

generate~j.

Example:

listv(/radar/track/sys3/testprog);

Vol 3

A tto



Load Program

This function loads a Load Object as a process in a suspended state. This

capability enables the debugger to modify the process before it executes.
Loadp returns the process-id of the created process.

Calling Syntax:

loadp ( objectname, ( argumentlist ) );

Ar guments:

objectname The name of the Load Object to be loaded

as a suspended process.

argumentlist The arguments to be passed to the process

when it is released.

Exatjople:

%pid loadp ( ada, ( prog'TXT ) );

Vol 3

A-b9

/6e4



Print

This function prints the informational content of an object in the KAPS.

data base.

Calling Syntax:

print ( object name )

Arguments:

object-name - The name of' the object whose informational

content is to be printeu.

E~xample:

print (/SUBSYS/TNAINER P01M)

Vol 3
A- 10 C



Read Access Rights

This function lists the access rights of a specified user or group for an

object in the KDB.

Calling Syntax:

racc ( objectname, name )

Argument,:

object name - The name of the object from which the

access rights are to be retrieveu.

name - A username or group name for which the

access rights are read.

Examples:

racc TESTPUM, TESTTEAM );

II

Vol 3
A -71



Read Attribute Value

This function lists the value of an attribute for an object in the KAPSE

data base.

Calling Syntax:

rdav ( object name, attributename );

Arguments:

objectname - The name of the object from which the

value of an attribute is to be retrieved.

attribute-name - The name of the attribute whose value is

to be listeu.

Examples:

rdav ( TESTPGM, SYSTEM );

Vol 3
A - Y L

*



Release Process

This function releases a specified MAPSE process that has previously been

suspended. Only an invocation of the ACLI that is an ancestor of the

process is permitted to release it.

Calling Syntax:

relp ( process_id );

Arguments:

processid The id of the process that is to be

released.

Example:

relp (p315 )

r

Vol 3

A-

4



Set Access Control

This function sets the access control rights for a particular object in the

KAPSE data base.

Calling Syntax:

sacc ( objectname, username, access_rights );

Arguments:

objectname - Name of the object to which the access

control rights are to be assigneu.

username The name of a particular user or group for

which access rights are to set. The

reserved name "default" indicates that

rights are to be set for "all other" users.

access rights The assigned access rights can be a

combination of any of the following:

r - ReaO pernission.

w - Write permission.

e - Execute permission.

d - Delete permission.

a - Append permission.

m - Access control modification

permission.

Vol 3
A - 74



p - Indicates that the access

control string is for partition

entries rather than for the

partition object.

The - and the + have special meaning in defining the access

control rights for an object. The + is used to aud additional

access rights for a particular user, while - is useu to delete

particular access rights. A string with - alone indicates

that a particular user may be assigned to have no access

rights to the specified object. if the accessrights string

is prefixed with a p, the rights are assigned to the partition

access attribute for the objectname, which must name a

partition.

Examples:

Define access to an object:

sacc ( /NAVY PROJ/RADAR/THACK, rwe );

Add modify permission:

sacc ( /USAFPROJ/hADAR/TRACK, +m );

Delete execute permission:

sacc ( /USAFPIWJ/RADAR/THAK, -e

Deny access to a particular user:

sacc ( /USAFPROJ/RADAIR/TRACK, -

Set partition access:

sacc C /USAF.PROJ/RADAR, TST.TLA, prwe );
Vol 3

A- 75



Set Default Branch

This function identifies, for an abstract object, the branch that is to be

used as the default (or preferreu) branch. On a uefault branch, the last

version will always be the default version.

Calling Syntax:

sdefb(object branchname);

Arguments:

objectbranchname The name of the branch to be used as

the default

Example:

sdefb (/radar/track/prog.rel 1);

Vol 3
A -

lliill/



Suspend Process

This function suspends all tasks within a specified MAPSE process. Only an

invocation of the ACLI that is an ancestor of the process it permitted to

Suspend it.

Calling Syntax:

susp ( processid );

Arguments:

process id The id of the process that is to be

suspenaeu.

Example:

susp p315 );

Vol 3
A - tI



Terminate Process

This function terminates a MAPSL process. Only an invocation of the ACLI

that is an ancestor of the process is permitted to terminate the process.

Callinb Syntax:

termp ( process id );

Arguments:

process id The id of the process that is to be

terminated.

Example:

termp ( p315 );

Vol 3

A- 7b



Volu,.,e 4

COMPUTER PROGRAM DEVELOPMENT SPECIFICATION

(TYPE 85)

COMPUTER PROGRAM CONFIGURATION ITEM

Configuration Management System

Prepareo for

Rome Air Development Center

Griffiss Air Force Base, NY 13441

Contract No. F.O6U2-bU-C-O 92

Vol 4
i

-L .



TABLE OF CONTENIS
Vol 4
fpae

Section 1 - Identification ....................................... 11

Section 2 - Applicable Documents ..................................... 2-1

2.1 Program Definition Documents ................................ 2-1
2.2 Inter-Subsystem Specifications ........................... 2-
2.3 Military Specifications and Standarus..................... L-1
2.4 Miscellaneous Documents................................... 2-1

Section 3 - Requirements ......................................... 1

3.1 General Description ......................................... 3-1
3.1.1 General Description ......................................... j-1
3.1.2 Peripheral Equipment Identification ....................... -
J.1.j Interface Identification .................................. :-
3.2 Functional Description ...................................... 3-2
..2.1 Equipment Description ........................................- 2
3.2.2 Computer Input/Output Utilization ......................... -
3.2.: Computer Interface Block Diagram ............................ 3-2
.z.4 Program Interfaces .......................................... 3-2

3.2.5 Function Description ..................................... -
Detailed Functional Requirements ............................ 3-7

3.3.1 Scanner ................................................. 7
3..2 Parser ...................................................... 3-9
3.3. Constructor ................................................. j-10
3.3.4 Updater ..................................................... 3-11
3.4 Adaptation ............................................... a1
3.4.1 General Environment ..........................................- 14
,.4J.2 System Parameters ........................ o...................-14
3.4.3 System Capacities ........................................... 3-15
3.5 Capacity ....................................................315

Section 4 - Quality Assurance Provisions ............................. 4-1

4.1 Introduction ................................................ 4-1
4.1.1 Subprogram Testing.,............................... o.........4-1
4.1.2 Program (CPCI) Testing ...................................... 4-2
4.1o3 System Integration Testing .................................. 4-4
4.2 Test Requirements ........................................... 4-4
4.2.1 Analysis of Algorithms ................................. o 4-!)
4.2.2 Review of Test Data .......................... %..............4-5
4.3 Acceptance Testing ........ .................. 4........................

Vol 4



TABLE OF CONTLN1'S (Cont'd)

Page

Section 5 - Documentation ........................................... 5-1

5.1 General ................................................... 5-1

5.1.1 Computer Program Development Specification .................. 5-1
5.1.2 Computer Program Product Specification ................... 5-1
5.1.3 Computer Program Listings ................................ 5-1
5.1.4 Maintenance Manual ........................................ 5-1
5.1.5 User's Manual ........................................... 5-2
5.1.6 Rehostability Manual ...................................... 5-i
5.1.7 MAPSE Tools Reference Handbook ............................ 5-2

5.1.8 Configure Validation Test Set Manual ...................... 5-2

I

i iv



SECTION 1 -SUPE

1.1 IDENTIFICATION

This document presents the Computer Program Development Specification (Type

b5) for the Computer Program Configuration Item (CPCl) known as the Minimal

Ada Programming Support Environment (MAPSE) Configuration Management System

(CMS). This specification establishes the performance, design, and test

requirements for the CMS.

1.2 FUNCTIONAL SUMMARY

The Configuration Management System consists of a MAPSE tool, Configure,

that interacts with the KAPSL Data base System (KDBS) to process and

maintain configurations and object histories. A configuration is a set of

data base objects combined with a set of rules that specify how these

objects may be derived from each other.

Vol 4

/-1



SECTIN 2 - APPLICABLE DOCUMENTS

2. 1 PROGRAM DEFINITION DOCUMENTS

1. Requirements for Ada Programming Support Environment, STONEMAN, February

19bU.

2. Statement of Work, Contract No. F3ObO2-8U-C-U292, 2b March 19b0.

2.2 INTER-SUBSYSTEM SPECIFICATIONS

j. System Specification for the Ada Integrated Environment.

4. Volume 1, Computer Program Development Specification for CPCI KAPSL

Framework.

5. Volume _, Computer Program Development Specification for CPCI KAPSE Data

Base System.

6. Volume 3, Conputer Program Development Specification for CPCI KAPSE APSL

Command Language Interpreter.

2.3 MILITARY SPECIFICATIONS AND STANDARDS

7. MIL-STD-483, Configuration Management Practices for Systems, Equipment,

Munitions, anu Computer Programs, 1 June 1971.

b. MIL-STD-490, Specification Practices, 30 October 19bb.

2.4 MISCELLANEOUS DOCUMENTS

9. Aho, A. V., and J. D. Ullman, The Theory of Parsing, Translation, and

Compiling, Vols. I and II, Prentice-Hall, 1972.

10. Aho, A.V., J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of

Computer Algorithms, Addison-Wesley, 1974.

Vol 4
2-1



SECTION j - REQUIREMENTS

3.1 INTRODUCTION

This section provides the general description, identifies the external and

internal interfaces, and presents the functional requirements and internal

characteristics of the Configuration Manager.

3.1.1 General Description

The Configuration Manager processes configurations and object histories. It

is a MAPSE-level tool, Configure, that utilizes KDBS functions to manage the

history attributes.

A configuration is defined in a configuration object. The two major

functions of Configure are:

Update - Determine and perform the minimal set of operations that

are required to bring specified objects in a

configuration up-to-date with the other objects in the

configuration.

Reconstruct - Determine and perform the minimal set of operations that

are required to reconstruct a specified version of an

object in a configuration.

3.1.d Peripheral Equipment Identification

Configure is a host-inoependent tool. The KAPSE data base objects processea

by Configure reside on secondary storage, typically host disk files.

3.1.3 Interface Identification

Configure invokes the APSE Command Language Interpreter (ACLI) Lbi to

process derivation specifications. Configure is the sole user of those KDBS

functions that manage the history attributes [5]. In addition, Configure

interfaces with the Ada Standard I/O Package, provided by the KAPSE Data

Base System (KDBS), and the KAPSE Framework (KFW) Interface Package,

provided by the KFW [4).

Vol 4
3-1



3.2 FUNCTIONAL DESCRIPTION

This paragraph describes the functions of the Configuration Manager, the

program and equipment relationships and interfaces identified above, and the

input/output utilization.

.2.1 Equipment Description

Configure is designed to be highly portable, and will execute on both the

IBM VM/370 and the Interdata bl2. All interfaces to the KAPSE are through

the KAPSE virtual interface, and Configure is completely host-independent.

. Computer Input/Output Utilization

Configure processes KAPS. data base objects that will typically be

represented as files on host storage devices.

3.2.:) Computer Interface Block Diagram

See Figure 3-1.

3.2.4 Program Interfaces

This Paragraph identifies the interfaces between Configure and the other

MAPSE components. Specifically, Configure has interfaces to the ACLI and to

the history management functions of the KDBS. Configure also interfaces

with the Ada Standard I/0 Package provided by the KDBS, and with the KFW

Interface Package to invoke the ACLI.

3.2.4.1 The ACLI Interface

A configuration object contains prototype commands written in the APSE

Command Language (ACL). Configure performs some initial processing of these

commands, and then creates a separate ACLI process to execute them. The

ACLI process is invoked using the "Start Process" function availuble in the

KFW Interface Package. The ACLI process returns a status code indicating

the successful execution of the command or the reason why the execution

failed.

3.2.4.2 The KDBS Interface

Configure calls on KDBS functions to create and to modify the history

attributes of objects. The detailed specification of these functions are

Vol 4
3-2

-12'



MAPSE PROCESS LEVEL. KERNEL PROCESS LEVEL

L VIEI

ACLL

FTIgure PKG.. NNEraeDiga

Vol 4L

CONFIURATON ACESS.ATTR3UTE

MAAEMN -RHI9 BACKUP,~' .! ~



provided in 15J. The history attributes consist of four individual

attributes: date-time, refcount, cf&_list, and dep list. The semantics of

these attributes are provided in Paragraph ..2.5. The KDbS utility

functions that manipulate them will be invoked as follows:

To read an attribute -

readv("object-name", "attribute-name",attribute-value)

To add a new attribute-value --

addav ("object-name", "attribute-name","initial-value")

To add a value to an attribute list --

addv ("object-name", "attribute-name", "value");

To change the value of an attribute -

chgv( "object-name", "attribute-name", "value") ;

.2.5 Function Description

The Configuration Manager is provided to maintain and process configurations,

and to permit the reconstruction and maintenance of member objects. In

order to present the functionality of Configure, the underlying concepts

must first be defined.

A configuration object (CO) defines a set of related objects along with a

set of operations to be performed on them. A CO is a text object, and may

be created with the MAPSE Editor. COs are created with the category "cfg".

Each CO identifies a set of derived objects. A derived object is one that

is produced by applying MAPSE programs to other derived objects and/or to

base objects. Within a CO, all objects whose derivations are not specified

by that CO are considered to be base objects. A base object in one CO may

be a derived object in another CO.

It is possible for a CO to specify no derived objects. In this case, the

purpose of the CO woula be to define common operations to be performed on

the specified base objects - operations that result in no new data base

objects.

The operations defined within a CO are written as sets of prototype commands

in the APSE Command Language (MCL). Each command set is associatea with a

Vol 4
3-4 (



dependency list. A dependency list indicates that a group of derived

objects is to be constructed (or configured) by processing a second group of

objects. This second group may contain derived objects that are, in turn,

dependent on other objects. The collection of dependency lists defines an

acyclic directed dependency graph. Each node is linked to every node that

it immediately depends on.

The arguments supplied to an invocation of Configure specify either a list

of derived objects that are to be brought up to date relative to the objects

that they depend on, or a list of object versions whose information content

is to be reconstructed. An object is up-to-date when it is at least as new

as the objects it depends on; note that this definition must be interpreted

rather carefully with respect to versioned objects, Paragraph 3..4.2. The

primary function of Configure is to perform the minimal processing necessary

to update or to reconstruct the specified objects.

One side-effect of updating a configuration is the setting of the history

attributes of the affected objects. The history attributes are maintained

to guarantee the reconstructability of configured objects. An object has

four history attributes:

1. Date-time attribute - identifies the date and time that the object

was last mooified.

2. Dep-list attribute - identifies the objects (and versions if these

are abstract objects) that this object

immediatedly depends upon.

. Ref-count - indicates the number of objects constructed

with Configure that immediately depend on this

object. Versions of base objects may not be

deleted if their ref-count is non-zero.

4. Cfg-list - lists the names of the Configuration Objects

that reference this object. (This attribute is

optional. If present it allows the

determination of all configurations that

include a given object.)

Vol 4
3-5A _________________________________



The operation of Configure can now be divided into four major steps:

1. Lexical analysis of the CO (Scanner).

2. Parsing of the CO (Parser).

5. Construction of the dependency graph (Constructor).

4. Determination of the objects that need to be updated or

reconstructed and invocation of the ACLI to process the associated

commands (Updater).

Figure 3-2 illustrates the flow of control between these steps.

IICONFIGURATION SANRPRE PAEOBJECT

FKAPSE VIRTUAL 
INTERFACE

IKFWINTERFACE PACKAGEI
(ADA RUN-TIME SUPPORT PACKAGE)

1KO
n
S UTILITY PACKAGE)

TP N, 03i.3039-A

Figure 3-2. Control Flow

Vol 4
3-6



j.j DETAILED FUNCTIONAL REQUIREMENTS

Configure has two functions: updating objects in a configuration, and

reconstructing specific versions of objects in a configuration. These

functions involve the processing of configuration objects, the derivation of

objects defined by the COs, and the management of history attributes so that

the defined objects can be reconstructed at any time. The following

paragraphs proviued a detailed specification of the format of the CO ana of

its processing by Configure.

Referring to Figure -k, there are four processing steps. These are

assigned to the Scanner, Parser, Constructor, and Updater. Each of these

steps will be treated is a separate paragraph below.

.3.1 Scanner

The function of the Scanner is to read the CO, divide the text into lexical

tokens, and process the macro definitions. The Scanner takes its input

directly from the CO, and outputs the resultant tokens to the Parser.

.3.1.1 lnputs

There are two classes of inputs to be considered. First, there are the

arguments passed to an invocation of Configure. Secono, there is the format

of the CO itself.

.. L.I.1 Invocation of Configure

Configure is invoked with the name of a CO, and a list of names of objects

to be updated. Invocation is through the StartProcess function supplied by

the KFW Interface Package. Users executing the ACLI invoke Configure with

an ACLI command:

Configure(CO-name,object-list);

The object-list is a list of data base object names. These may name

abstract objects, object branches, or specific versions (see [5] for a

discussion of version control and object naming). The object list need not

be specified - the default value is the name of the first object specified

in the first dependency rule in the CO. The names in the object list must

be defined by the CO.

Vol 4
3-7

J/ 

,



The Scanner opens and reads from the designated CO. The scanner does not

further process the object list argument, this arbument is preserved for use

by the updater.

3.j.1.1.2 CO Format

The CO is an object created using the Ada Text I/O Package, usually by the

Editor. The CO is assigned the category cfg. The format of the CO is as

follows:

macro-definitions

dependency-rules

Each macro definition must appear on a separate line, and has the form of a

simple ACL assignment statement:

%identifier := character-string

ACL syntax is used for the identifier and characterstring (see the ACL

Reference Manual, Attachment to the B5 Specification for the ACLI). A macro

definition indicates that subsequent occurrences of the identifier are to

be replaced by the characterstring. These occurrences may appear in later

macro definitions.

A dependency-rule has the following form:

target-object-list : dependent-object-list

prototype-ACL-commands

Each line that does not begin with a space character (or horizontal tab)

begins a new dependency rule. The object lists are blank-delimited lists of

object names. An object name may identify an abstract object, object

branch, or a specific version. The target objects are those objects that

are to be updated if they are not at least as new as the dependent objects.

The associated prototype-ACL-commands will be executed by the ACLI, after

macro substitution is performed, if any target object needs to be updated.

While these constitute the basic requirements for CO syntax, there are a

number of extensions that may be considered for inclusion in the C-level

Vol 4
3-8

1 7



specification. Such extensions include default dependency rules (e.1, a
'REL object may implicitly depend on compiling a "TXT object of the same

name), and special macros that expand to target or dependency lists to ease

the specification of the ACL command strings.

3..5.1.2 Processing

Lexical analysis is performed by a simple, table-driven, finite-state

recognizer. Algorithms for such recognizers are well-known and simple to

implement (e.g., L 9). Macro definitions are saved and matched against

subsequent input before this ii.put is divided into lexical tokens. The

prototype ACL commands are not divided into tokens, although they are

subject to macro substitution. Each such command is considered to be a

single token.

3.-.1.3 Outputs

The output of the Scanner is a stream of (token-number, value) pairs. The

token number is of enumeration type, and identifies the class of the token.

The value is the character string that was the source representation of the

token.

Since the Scanner and parser operate logically as coroutines, each is to be

defined as an Ada task. A producer task, the Scanner, generateb token pairs

for a consumer task, the Parser.

3.j.2 Parser

The Parser serves to group together the tokens provided by the scanner, and

to call the appropriate constructor procedures to build the dependency graph.

3.3.2.1 Input

The input to the Parser is the output of the Scanner, a list of token names

and their values. As indicated above, the Scanner and Parser perform as a

pair of producer and consumer tasks, respectively.

Vol 4
3-9

4 7->...;_ L:- _ . :.-., , -,L , ' 4 ~



3.3.2.2 Processing

Because the format of the CO is so simple, parsing can be accomplished with

an algorithm tailored specifically for the purpose.

The Parser calls a Constructor function to create a dependency graph node

for each object, whether a target or dependency object:

create-node (object-name);

The function returns a node index (or pointer). New nodes will not be

created for object names that have previously been processed.

For each dependency indicated by a dependency rule, a Constructor function

is called to link the two nodes:

link (target-node-index, dependency-node-inoex);

Link returns a link index (or pointer).

A command node is created for each ACL command string:

create comnode(ACL-comand-string);

This node is associated with the each corresponding dependency link:

addcomniand(com-node-index, link);

3.Z.2.3 Output

There is no explicit output of the Parser. The dependency graph is produced

as a side-effect so that it can be then processed by the Upoater.

3.j.3 Constructor

The Constructor provides all the subprograms necessary to build the

dependency graph. The subprograms are invoked by the Parser.

,..3.3.1 Inputs

The following interfaces are provided by the Constructor to the Parser:

Vol 4
3-10

'I

.k~- -



createnode(object-name) returns node-index

link(target-node-index, dependency-node-index) returns link-index

createcromnode(ACL-command-string) returns com-node-index

add command(com-node-index, link);

3.4.3.2. Processing

The above subprograms are called by the Parser, as indicated in Paragraph

J.3.2.2, to build the aependency graph. The processing associated with each

of the subprograms is straightforward. Createnode allocates a new graph

node. Link creates a dependency between two graph nodes. Createcomnode

creates a command node. Add-command links a dependency to a command node.

. . Outputs

The explicit outputs of the Constructor functions have been described above

in Paragraphs 3.3.e.2 and . The implicit output is the aepencency

graph.

3..4 Updater

The function of the Updater is to determine the minimal set of operations

that are required to update or to reconstruct the specified target objects.

This determination is made recursively, following object dependencies and

the date-time attribute, and the ACLI is invoked to perform the operations.

3.3.4.1 Inputs

There are two inputs to the Updater. The first is the list of target

objects specified in the original invocation of Configure. This list is

examined by the Updater to determine the initial set of objects to update.

If no list is specified, the default action is to update the first object

mentioned in a dependency rule.

The second input to the Updater is the dependency graph structure built by

the Parser and the Constructor. This structure identifies all dependencies

between objects as well as the ACL command strings that must be executeo to

fulfill the dependencies.

Vol 4
3-11

I
' 1-



3.3.4.2 Processing

The Updater provides the functions required for normal updating as well as

for version reconstruction. While these functions require substantially

similar graph-walking processing, they are sufficiently dissimilar to

require separate paragraphs below.

3.2.4.2.1 Normal Updating

Normal updating of an object consists of the processing requirea to bring

that object up to date with respect to all other objects in the

configuration. The criterion that the Updater uses to determine whether to

update an object is called the upaate criterion.

If a target or dependency object name specifies an abstract object, the

update criterion will be applie6 to the last version on the default branch

of that abstract object. If the object name specifies a branch, the update

criterion will be applied to the last version on that branch. If the target

specifies a version, then Configure is being asked to reconstruct the

information content of that version. Reconstruction is treated in Paragraph

3.3.4.2.2. If the object name specifies a nonversioned object (a

nonabstract object), the update criterion will be applied to the object

itself.

The update criterion is specified below. Note that the use of the term

"object" must be interpreted accoruing to the preceding paragraph.

Update Criterion: A target object must be updated if it is

nonexistent, or if it is older than at least one of the objects it

depends on.

This criterion must be evaluated for the entire graph rooted by the target

object. The following algorithm may be used to process a dependency graph

for a given target:

1. Stack the initial target name if it is not a base object and mark

its graph node as "stacked".

2. If the stack is empty, terminate the algorithm. Otherwise let TOP

be the top name on the stack.

Vol 4
3-12



3. If TOP is marked "processed", update it if it is older than any of

the objects it immediately depends on, pop it from the stack, and

go to step 2. This updating involves the following steps:

a. Invoke the ACLI to process the ACL command string
associated with the dependency rule defining the target

object being updateu.

b. Set the date-time attribute of the target object to the{ current date-time.

c. Set the dep-list attribute of the target object to

include the names of each object the target depended on,

and the name of the present CO. These must all be fully

qualified version names.

d. Increment the ref-count attribute of each object

(version) dependeu on.

e. For each target and dependency object (version) that has

a cfg-list attribute, add the name of the present CO to

the attribute.

4. If TOP is not marked "processed", then mark it "processed" and

stack each name that it depends on that is not marked "stackec" or

"processed". Mark "stacked" each name that was stacked. Go to

step 2.

3.s.4 .2.2 Object Reconstruction

The Updater is also used to reconstruct the previously deleted information

content of derived object versions. Reconstruction is made possible through

the use of the information present in the history attributes. The following

algorithm may be used to reconstruct a target object version:

1. Stack the initial target version name (only if the object version

is a derived object).

2. If the stack is empty, terminate. Otherwise let TOP be the top

name on the stack.

Vol 4
3-13

V
- --



3. If TOP is marked "processed", invoke the ACLI to process the ACL

command string associated with the dependency rule aefining TUe.

However, first instantiate for each abstract object name or branch

object name in the string the respective version name that is

provided by the dep-list attribute of object TOP. Pop TOP from the

stack and go to step 2.

4. If TOP is not marked "processed", mark it "processed" and stack the

name of each object version mentioned in its dep-list that is not

marked "processed" or "stacked". Do not, however, stack the names

of derived versions that have not had their information content

deleted. In addition, do not stack names of versions that were

defined in a different CO. For these objects, invoke Configure

recursively to reconstruct their information content. Mark

"stacked" each name that was stacked in this step. Go to step 2.

3.3.4.3 Outputs

There are no explicit outputs of the Updater.

3.4 ADAPTATION

This section describes any adaptation that might be required to rehost the

Configuration Manager.

3.4.1 General Environment

There are no aspects of the general environment that impact rehostability.

3.4.2 System Parameters

Depending upon host characteristics, Configure may execute in a fixed amount

of main memory or may request more space dynamically. In the first case

parameters must be set to limit the characteristics of the Configuration

Objects. These parameters include size of the objects, number of

dependencies, number of objects referenced, and total length of ACL command

strings.

Vol 4

3-14

/z 1



3.4.3 System Capacities

The memory that Configure can request dynamically may be limited. This

*i limitation may result in diagnostic messages issued by Configure when

processing large Configuration Objects.

3.5 CAPACITY

Not applicable.

Vol 4

3-15

/. i
"T ' k



SECTION 4 - QUALITY ASSURANCL PROVISIONS

4.1 INTRODUCTION

This section contains the requirements for verification of the performance

of the Configuration Management System (CMS). The test levels, verification

methods, and test requirements for the detailed functional requirements in

Section 3 are specified in this section. The verification requirements

specified herein shall be the basis for the preparation and validation of

detailed test plans and procedures for the Configuration Management System.

Testing shall be performed at the subprogram, program (CPCI), system

integration, and acceptance test levels. The performance of all tests, and

the generation of all reports describing test results, shall be in

accordance with the Government-approved CPDP ana the Computer Program Test

Procedures.

The verification methods that shall be used in subprogram and program

testing include the methods described below:

1. Inspection - Inspection is the verification method requiring visual

examination of printed materials such as source code listinks, normal

program printouts, and special printouts not requiring modification of

the CPCI. This might include inspection of program listings to verify

proper program logic flow.

2. Analysis - Analysis is the verification of a performance or design

requirement by examination of the constituent elements of a CPil. For

example, a parsing algorithm might be verified by analysis.

j. Demonstration - Perforance or design requirements may be verified

by visual observation of the system while the CPCI is executing. This

includes direct observance of all display, keyboard, and other

peripheral devices required for the CPCI.

4. Review of Test Data - Performance or design requirements may be

verified by examining the data output when selected input data are

processed. For example, a review of hard copy test oata might be used

to verify that the values of specific parameters are correctly computed.

Vol 4

4-1



5. Special Tests - Special tests are verification methods other than

those defined above and may include testing one functional capability of

the CPCI by observing the correct operation of other capabilities.

These verification methods shall be used at various levels of the testing

process. The levels of testing to be performed are described in the

paragraphs below. Data obtained from previous testing will be acceptable in

lieu of testing at any level when certified by CSC/SLA and found auequate by

the HADC representative. Any test performed by CSC/bEA may be observed by

RADC representatives whenever deemed necessary by RADC.

Table 4-1 specifies the verification method for each functional requirement

given in Section . of this specification. The listing in Table 4-1 of a

Section 3 paragraph defining a functional requirement implies the listing of

any and all subparagraphs. The verification methods required for the

subparagraphs are included in the verification methods specified for the

functional requirement. Acceptance test requirements are discussed in

Paragraph 4. .

Table 4-1. Test Requirements Matrix

SECTION TI1LE INSP. ANAL. DEMO. DATA. SECTION NO.

Scanner X X 4.2.1, 4.2.2

3.3.2 Parser X X 4.2.1, 4.L.2

3.3.3 Constructor X 4.2.2

o. .4 Updater X X 4.2.1, 4.2.2

4.1.1 Subprogram Testing

Following unit testing, individual modules of the CMS shall be integrated

into the evolving CPCI and tested to determine whether software interfaces

are operating as specified. This integration testing shall be performed by

the development staff in coordination with the test group. The development

staff shall ensure that the system is integrated in accordance with the

design, and the test personnel shall be responsible for the creation and

conduct of integration tests.

Vol 4

4-2



4.1.2 Program (CPCl) Testing

This test is a validation of the entire CPCI against the requirements as

specified in this specification.

CPCI testing shall be performed on all development software of the

Configuration Management System. This specification presents the

performance criteria which the developed CPCI must satisfy. The correct

performance of the CMS will be verified by testing its major functions.

Successful completion of the program testing that the majority of

programming errors have been eliminated an that the program is ready for

system integration. The method of verification to be used in CPCI testing

shall be review of test data. CPCI testing shall be performed by the

independent test team.

4.1.3 System Integration lesting

System integration testing involves verification of the integration of the

CMS with other computer programs and with equipment. The integration tests

shall also verify the correctness of man/machine interfaces, and demonstrate

functional completeness and satisfaction of performance requirements.

System integration testing shall begin in accordance with the incremental

development procedures as stated in the CPDP. Final system integration

shall occur subsequent to the completion of all the CPCIs comprising the

MAPSE system. Two major system integration tests shall be performed: one

for the IBM VM/70 implementation and one for the Interdata b/.32

implementation. The method of verification used for system integration

testing shall be the review of test data.

The test team shall be responsible for planning, performing, analyzing

monitoring, and reporting the system integration testing.

4.2 TEST REQUIREMENTS

Quality assurance tests shall be conducted to verify that the CMS performs

as required by Section 3 of this specification. Table 4-1 specifies the

methods that shall be used to verify each requirement. The last column

refers to a brief description of the specified types of verification as

given below. Test plans and procedures shall be prepared to provide details

Vol 4

4-3

L
.Il



regarding the methods and processes to be used to verify that the developed

CPCI performs as required by this specification. These test plans and

procedures shall contain test formulas, algorithms, techniques, and

acceptable tolerance limits, as applicable.

The Scanner, the Parser, and the graph-walk algorithms of the Updater shall

be validated both by analysis of the constituent algorithms and by formal

review of test data. The Constructor shall be validated by formal review of

test data.

In order to provide for program testing of the Configuration Manager in

advance of the completion of the KFW and KD1S, a facility shall be provideu

to log rather than execute all calls made on KFW and KDBS functions. This

logging facility shall be used to generate test output data from the test

input scripts. The test input scripts are a subset of those that will

constitute the Configure Validation Test Set described below in Section

4.3. Validation shall be by formal review of test data.

The Configure Validation Test Set shall be augmented with tests for

validating each interface described in Paragraph .;.4. A program shall be

written that will automatically execute the augmented test. Validation of

the system integration of the Configuration Manager shall be by formal

review of test data.

4.2.1 Analysis of Algorithms

The coded scanning and parsing subprograms shall be inspected to ensure that

they conform to provably correct algorithms that have appeared in the

literature (e.g., [9j). The graph-walk algorithms of the Updater shall be

verified via formal mathematical proof techniques (see lOUJ). The coded

Upoater subprogram shall be inspected to ensure that it conforms to the

proven algorithms.

4.2.2 Review of Test Data

Drivers shall be written to generate input data and to log output data.

Test input scripts and expected test output shall be developed by test

personnel in accordance with subprogram and program specifications. Testing

shall consist of comparing expected output data with test output data. To

Vol 4I-



minimize the effort required for developing drivers, a bootstrap approach
shall be taken. Thus an initial driver for the Scanner shall be provided,

the Scanner shall serve as the driver for the Parser, and the Scanner-Parser

shall serve as the driver for the Constructor and Updater.

4.. ACCEPTANCE TESTING

A Configure Validation Test Set shall be prepared, consisting, of a

comprehensive set of test scripts along with expected output for each

script. Scripts shall be provided to generate and process a considerable

variety of Configuration Objects. Both the update and reconstruction

funcion5 shall be extensively tested.

A program shall be written that will automatically execute the Configure

Validation Test Set and compare the expected output data with the test

output data. The output of this program will be a report documenting the

successful or unsuccessful execution of each script in the Test Set.

Successful execution of the entire Test Set shall constitute successful

completion of the acceptance test. Detailed requirements for the Test Set

shall be included as part of the Computer Program Test Plans to be approvea

by the Government.

Vol 4

4-5

. ft



SECTION 5 - DOCUMENTATION

5.1 GENERAL

The documents that will be produced during the implementation phase in

association with the Configuration Manager are:

1. Computer Program Development Specification (Type B) - Update

2. Computer Program Product Specification

i, Computer Program Listings

4. Maintenance Manual

5. User's Manual

6. Rehostability Manual

7. MAPSE Tools Reference Handbook

8. Configure Validation Test Set Manual.

5.1.1 Computer Program Development Specification

The final Configuration Manager B5 Specification will be prepared in

accordance with DI-E-01i9 and submitted 30 days after the start of Phase 11.

5.1.2 Computer Program Product Specification

A Type C5 Specification shall be prepared during the course of Phase II in

accordance with DI-E-3014U. This document will be used to specify the

design of the Configuration Manager and the development approach

implementing the B5 specification. This docunent will provide the detaileo

description that will be used as the baseline for any Engineering Change

Proposals.

5. Computer Program Listings

Listings will be delivered that are the result of the final compilation of

the accepted Configuration Manager. Each compilation unit listing will

contain the corresponding source, cross-reference, and compilation summary.

The source listing will contain the source lines from any INCLUDEo source

objects.

Vol 4
5,-1



5.1.4 Maintenance Manual

An Configuration Manager Maintenance Manual will be prepared in accordance

with DI-M-0422 to supplement the C5 and compilation listings sufficiently

to permit the Configuration Manager to be easily maintained by personnel

other than the developers. The documentation will be structured to relate

quickly to program source. The procedures required for debugging and

correcting the Configuration Manager, along with debugging aids that have

been incorporated as an integral part of the Configuration Manager, will be

described and illustrated. Sample scripts for compiling Configuration

Manager components, for relinking the Configuration Manager in parts or as a

whole, and for installing new releases will be supplied.

5.1.5 User's Manual

A User's Manual shall be prepared in accordance with bl-M-0421, and will

contain all information necessary for the operation of the Configuration

Manager. Because of the virtual user interface persented by the

Configuration Manager, a single manual is sufficient for all host

computers. Information relevant to specific hosts will be containec in an

appendix. A complete list of all Configuration Manager diagnostic messages

will be included with supplemental information supplied to assist the user

in locating and correcting ACL errors.

5.1.6 Rehostability Manual

In accordance with R&D-137-RADC and R&D-13b-RADC, a manual will be prepared

that describes step-by-step procedures for rehosting the Configuration

Manager on a different computer.

5.1.7 MAPSE Tools Reference Handbook

A MAPSL Tools Reference Handbook shall be produced containing syntax

diagrams for all command constructs.

5.1.b Configure Validation Test Set Manual

A manual shall be provided that describes the procedures for running the

Configure Validation Test Set. A machine-readable form of the Test Set

shall be provided along with listings of each member of the Test Set.

Vol 4
!)-2



11MM - --

Volume 5

COMPUTER PROGRAM DEVELOPMENT SPECIFICATION

(TYPE B5)

COMPUTER PROGRAM CONFIUURATION ITi.M

Ada Compiler

Prepared for

Rome Air Development Center

Griffiss Air Force Base, NY 13 441

Contract No. F O602-bO-C-0292

Vol 5

-,-o



TABLE OF CUN'ENIS
Vol 5

Section 1 - Scope ................................................. I-1

1.1 Identification ........................................... I-I
1.2 Functional Summary ....................................... 1-1

Section 2 - Applicable Documents .................................. 2-1

2.1 Program Definition Documents ............................. 2-I
2.2 Inter-Subsystem Specifications ........................... 2-1
2.j Military Specification and Standards ..................... 2-1
2.4 Miscellaneous Documents .................................. 2-2

Section 3 - Requirements .......................................... _-_

3.1 Introiuction ............................................. . -i
j.1.1 General Dcfinition ....................................... .- 1
3.1.2 Peripheral Equipment Identification ...................... 3-2

I lnterface Identification ................................. ;.-2
3.1.4 Function Identification .................................. 3-2

3.2 Functional Description ................................... -4
3.2.1 Equipment Description .................................... 3-4
3.2.2 Computer Input/Output Utilization ........................ 3-4

i.2.3 Computer Interface ....................................... 3-4
3.;.4 Program Interface ........................................ . -5
5.2.5 Function Description ..................................... -b

_)..j DetaileL Functional Requirements .........................
3.3.1 Compiler Executive - EXEC ................................ 3-14
3.3.2 Lexical Analysis - LEX ................................... 3-It
3..3 Library Specification Input - LIBI ....................... .3-b

3.3.4 Resolution and Semantic Analysis - RESANL................ 3-19
3.s.5 Allocator - ALL .......................................... 3-23
3.3.6 Constraint Analysis Procesing - CHECKS ................... )-24
3.D.7 Target Optimizer - TOP ................................... -2u
3.3.b Flow Analyzer - FLOW ..................................... 3-2b
3.3.9 Optimizer - OPT .......................................... . 3-
3.3.10 Loop Processor - LOOPER ................................. -34
3.3.11 Code Generator - CUGEN .................................. 3-36
3.3.12 Post Code Generation Optimizer - POST .................... )-41
3.3.11 Assembler - ASM ......................................... 3-44
3.3.14 Cross-reference Generator - XREF ......................... )-40
3.3.1b Library Unit Specification Update - LIBO ................. . -47
3.4 ADAPTATION ................................... .......... 4
3.4.1 Ueneral Environment ..................................... J-48
D.4.2 System Parameters ....................................... 3-4b
3.4.3 System Capacities ........................................ 3-4b
3.5 Capacity ...............................................

Vol 5

MEN"
- t-. -. -. -



Page
Section 4 - Quality Assurance Provisions ............................ 4-1

L.1 Introduction ................................................ 4-1
4.1.1 Subprogram Testing .......................................... 4-2
4.1.2 Program (CPCI) Testinig................................... 4i
4.2 Test Requirements ........................................... 4-3
4.2.1 Inspection .............................................. 4-
4.2.2 Review of test data .......................................... 4-4
4.2.3 Special Tests ................................. o..............4-4
4.3 Acceptance Testing .......................................... 4-5

Section 5 - Documentation .......................................... 5-i

5.1 General,....................................................5-1
5.1.1 Computer Program Devtlupment Specification ................... 51
5.1.2 Computer Program Development Specification .......... o........5-1
5.1.3 Computer Program Listings ........ o.............................-2
5.1o4 Maintenance Manual... .... o...................................5-2
5.1.5 Users Manual ............................................. !-
5.1.6 Hetargability/Rehostability Manual ........................... 5-3

Appenojix A - Symbol Table ............ o...................... o.......A-1

Appendix B - Intermediate Language.... ........ o.....................B-1

Appendix C - ADA Relocatable Object Format .......................... C-1

Appendix D - Program Libraries .................. o...................D-1

Appendix E - Listings .................... o........ o.................E-1

Appendix F - ADA Run-Time Library .................................. F-1

LiSi OF ILLUSIRATlUNS

FigurePage

3-1 Interface Diagram .......................... o...............3-3
3-2 Data Flow ................. o............. o....................-6
3-3 Compiler Structure............................................ 3-13
3-4 Code Straightening ......................................... 3-30
3-5 Procedure List Pointers .................................... 3-31

Vol 5

IVV



SECTION I - SCOPE.

1.1 IDENTIFICATION

This specification establishes the performance, design, development, and

test requirements for the Computer Program Configuration Item identified as

the MAPSE Tool Set member, the Ada Compiler, referred to hereafter simply as

the Compiler.

1.2 FUNCTIUNAL SUMMARY

The purpose of this specification is to define the Ada Compiler being

designed as part of the Ada Integrated Environment contract for RADC. This

document shall serve to communicate the functional design decisions that

have been adopted and to provide a basis for the detailed design and

implementation phase.

The Ada Lompiler is the MAPSE tool which processes Ada source programs and

translates these programs into machine level instructions to permit the

programs to execute on the selected target computer. The design chosen hast

been selected to meet the following general requirements and goals:

1. The Compiler must implement the full Ada Language as described in

reference 1. This is an absolute requirement.

2. The Compiler must generate very efficient object code. One of the

primary uses of the language will be for the development of

embedded computer systems. Characteristics of these Systems are

that they must operate in real-time anG are resident in computer

configurations where cost, size and weight constraints demand

highly optimized programs.

3. The Compiler shoulu provide comprehensive source language

processing facilities. Although many of the functions listed below

could be provided by separate tools which either process the

original source or an abstract representation of the program, all

of these functions may be incorporated as an integral part of the

Compiler with little or no impact on compiler development cost,

size, or performance. The functions that shall be incorporated are:

Vol 5



a. Source reformatting, also known as "prettyprinting"

b. Static statistics collection and reporting

c. Program flow description

d. Run time support for dynamic statistics collection,

performance tuning, path entrance verification,

environment simulation and data recording/reduction tools

e. Recording of name usage from library unitb for subsequent

production of a concordance listing by the Linker

f. Helpful aids listings including side-by-side assembly,

cross-reference, statistics, diagnostics, and compilation

summary.

4. The Compiler is to be easily retargeted and rehosted although these

characteristics should riot compromise target code efficiency

5. The Compiler should compile within SbK bytes of memory, but should

make use of additional resources to increase its capacity ana

performance.

b. The Compiler must be very reliable ana facilitate its own

maintenance.

Vol 5
1-2

" ,l jm , d ~ b, ...



SECTION 2 - APPLICABLE DOCUMENTS

The following documents form a part of this specification to the extent

specified herein.

2.1 PHOURAM DEFINITION DOCUMENTS

1. Reference Manual for the Ada Programming Language, July 1960.

2. Requirements for Aua Programming Support Environment, "STONEMAN",

February, 1sbO.

,. Statement of Work, Contract No. F3OO2-bO-C-O292, bO Mar eb.

2.2 INTER-SUBSYSTEM SPEC]FICATlONS

4. System Specification:.

5. Volume 1, Computer Program Development Specification for GPC KAPSE

Framework.

U. Volume 2, Computer Program Development Specification for CPCI KAPSL

Data Base System.

7. Volume 3, Computer Program Development Specification for CPCI APSE

Command Language Interpreter.

8. Volume 4, Computer Program Development Specification for CPCI MAPSE

Configuration Management System.

9. Volume b, Computer Program Development Specification for CPCI MAPSL

Linker.

10. Volume 7, Computer Program Development Specification for CPCI MAPSE

Editor.

11. Volume 8, Computer Probranm Development Specification for CPCI MAPSE

Debugger.

2.. MILITARY SPEC1FICATIONS AND STANDARDS

12. MIL-STD-4b , Configuration Management Practices for Systems,

Equipment, Munitions, and Computer Programs, 1 June 1971.

13. MIL-STD-490, Specification Practices, 30 October 196b.

Vol 5
2-1

o. •,



2.4 MISCELLANEOUS DOCUMENTS

14. Proceedings of the ACM-S1UPLAN Symposium of the Ada Programming

Language, Dec. 9-11, 100.

15. DIANA Reference Manual, 20 January 19bl.

16. Rationale for the Design of the GhLEN Prograning Language, March

15, 1579.

17. Formal Definition of the Ada Programming Language, November 19b0.

I8. Ada Compiler Validation Implementers' Guide, October 1, 19b0.

19. Sorting and Searching, Knuth, March 1975.

20. TCOL-Ada, Revised Report on an Intermediate Representation for the

Preliminary Ada Language, Brosgol, et al, 15 Feb bO.

21. The Charrette Ada Compiler, Lamb, et al, Oct. bU.

22. An Informal Introduction to AIDA, Dousmann, et al, Nov. 25, 80.

23. AIDA Reference Manual, Persch, et al, Nov. 11, 80.

24. JOCIT/J3 Project Workbook.

25. J73 JOVIAL Project Workbook.

2b. Depth-First Search and Linear Graph Algi-ithms, R. E. Tarjan, SlAM

Journal of Computing 1:2, 1L7.

Vol 5
2-2

~, 4 -



SLCTION . - REQUIREMENTS

3.1 INTRODUCTION

This section describes the functional requirements and characteristics of

the Configuration Item identified as the Ada Compiler.

3.1.1 Ueneral Definition

The Ada Compiler accepts as input a source object written in the Ada

Language as defined in the Reference Manual for the Ada Programming

Language, July 19b0, and produces a relocatable object for one or more

computers.

The Compiler is to operate initially on the IBM 70. The Compiler shall be

written in Ada and a major design goal is that the Compiler shall be

portable to other host computers and be easily retargetable, in particular,

to embedded computers. To demonstrate the Compiler's adaptability, the

Compiler shall be retargeted to the Interdata b/l2 and rehosted, by

compiling itself, to the 6/2 under the 0S/2 Operating System. The

Compiler shall support, and permit selection from, multiple targets.

The Compiler design shall minimize the host computer system resources

required for a compilation and permit utilization of available memory to

increase compilation speed and input program limits.

The Compiler shall consist of multiple phases operating on various

representations of the source program. The design shall include several

global optimization passes. An innovative concept to be used to enhance the

optimization effectiveness is to preprocess the IL produced by the front-end

to incorporate machine dependencies into the program representation.

Included in these dependencies will be such information as register vs.

stack guidance, number of registers, calling convention expansions,

addressing requirements, loop control orientation, etc. The intent is to

supplement the information in the IL to orient the global optimization

toward the selected target while retaining the machine independence of the

major optimizing phases.

Vol 5
3-1



3.1.2 Peripheral Equipment Identification

The Compiler is to operate on the IBM 70 under the VM operating system and

on the Interdata b/32 under the OS/2 Operating System.

j.1.3 Interface Identification

The Compiler interfaces are identified as the ACLI, the KAPSE Data base

System (KDBS), the KAPSE Framework (KFW), the Editor, the Linker, ano the

Debugger. Figure 3-1 illustrates the relationship of the Compiler to the

rest of the MAPSE.

3.1.4 Function Identification

The Compiler is functionally organized to permit the processing of an Aoa

program as a series of sequential phases that operate on various

memory-resident tables or intermediate files representing the program at

successive stages of the compilation. The functional phases are identified

as follows:

EXEC - the resident compiler utilities

LEX - the lexical analyzer

LIBI -- the Program Library processor

RESANL -- the resolver and semantic analyzer

ALL -- the data allocator

CHECKS -- the constraint processor

TOP -- the target computer IL transformer

FLOW -- the flow analyzer

OPT -- the main optimizer phase

LOOPER -- the loop optimizer

CODE -- the code generator

POST -- the post code optimizer

ASM -- the assembly lister and object formatter

XREF -- the cross-reference processor

LIBO -- the Program Librarian

Vol 5
3-2



MAPSE POCESS LEVEL KERNEL PROCESS LEVELI
H~OST
LEVEL

ACLt

10ONMURATPROCES ACES. rTINT

COMPISPACEE

LINKERIA asR-T-R-I-A-O-

EDITOREOES TASIRECTORFWIKF

KENE MACM.j INTERFACES

Figure~ROES -. nracDigAMIN

DEBUGGER~Vo 1/5IPAC
EVN-3NIO

- --- - - - ----. -- T -- -
KFW~- VOLMEM.



3.2 FUNCTIONAL DESCRIPTION

This section describes the functions of the Compiler, the program and

interfaces identified above, and the utilization of input/output by the
Compiler.

3.2.1 Equipment Description

The Compiler shall accept inputs and produce outputs in a device-independent

fashion. The design shall permit compilation of a non-trivial Ada program
with at least 5O executable Ada source statements in at most 25b~K bytes of

memory.

3.2.2 Computer Input/Output Utilization

The Compiler utilizes the Ada Standard I/0 Package to perform all of its

file operations. The files utilized by the Compiler are described below:

Source -- contains Ada program source or include files

Token -- contains lexical tokens after LEX

Cref -contains cross reference information

ILs -several intermediate program representations

Code -- contains code files from CODE and POST

Libs -- contains the Program Libraries

Lrefs -- contains label/proc/f unc references

Bel -- contains the relocatable object

Listings -- contains various Compiler listings

Error -- contains diagnostic messages

3.2.3 Computer Interface

The Compiler has no direct hardware interfaces with the host computer but

must understand inherently the target instruction repertoire and the

addressing capability in at least the TOP. CODE, and POST phases. The

remaining phases will draw any target dependent information required for

their processing from tables which describe various target computer

parameters. This information will be from two sources -- package SYSTEM and

from Compiler tables whose target-dependent entry index is selected based

upon a Compiler option used for selecting the target.

Vol 5
3-4



3.2.4 Program Interfaces

The Ada Compiler shall operate as an executable program under KAPSE. It may

be invoked by the ACLI directly in response to a command or, may be invoked

by any MAPSE tool or program, by a call with the INTERFACE pragma indicating

a process. Figure 3-2 illustrates the data flow through these interfaces.

The method of invocation shall be transparent to the Compiler; its operation

is identical in either case. The command parameters that include the

identification of the input/output object names to be used for the

compilation and the compilation, options shall be parsed by the Initiator

(see Initiator in ref. 10) according to the Compiler main program unit-spec

and initialized into heap space. A normal call is then made to the main

program and compilation begins.

The Compiler shall utilize Ada Standard I/0 for its file operations and

shall operate in a device-inuependent manner. As with all tools, the mode

of user connection (e.b., batch, interactive, etc.) shall be transparent to

the Compiler.

Except for the KAPSE I/O interface, the Compiler interfaces are embodieu in

the objects read and written and in the code produced for interfacing with

the Ada run-time support routines. The object interfaces are:

1. Source objects - Ada compilation unit source, INCLUDE source and

the Compiler output li.ting objects shall all be represented in the

standard text object format produced and accepted by the Editor.

Integer and fractional line keys shall be accepted on source lines

and shall be displayed on the source listings and used throughout

the Compiler to cross-reference to the source statements. In

absence of any keys on the input source object, ordinal line

numbers shall be assigned by the Compiler and used for source

referencing.

Additionally, text objects may contain hidden attributes

identifying changed ur deleted lines since the previous version.

Vol 5
3-5

/ ,/

1- .~..



(DATA ENTRY

TEKT 
-

---
OUC

4COMMN D CMIE

ICOMMALIILINKE

Figure 3-2 Data Flow

Vol 5

3-6 6

..........
rr r -~~~*



... . _ - -... , -e -I . -- M- - =L

The Compiler shall display an indication of these changes in its

source listings.

Each form of listing produced by the Compiler shall contain a

unique character sequence in a fixed position on the listing line.

This "listing code" may be used to identify and segregate listing

types for quick examination of a compilation listing.

2. Relocatable Objects - The Compiler shall produce a relocatable

object in MAPSE standard target-independent format. This object

shall be read by the Linker. The format and contents of a

relocatable object is described in Appenoix D.

3. Program Libraries - During compilation of an Ada program, the

Compiler shall access from, and create information for, a Program

Library. This information, called "unit-specs", shall describe the

visible compilation unit attributes. Library objects serve as the

retention media for Compiler-to-Compiler, Compiler-to-Linker, and

Linker-to-Linker communication. The format and contents of Program

Libraries are defined in Appendix E.

Compiled programs shall contain calls generated by the Compiler to run-time

Ada support routines to implement various Ada features such as tasking,

exponentiation, string handling, space management, etc. The logical

relationship of the compiler with the other MAPSE tools is shown below:

Vol 5

3-7

/.



3.2.5 Function Description

As the one component of the MAPSE tool set that is required to parse and

analyze Ada source programs, the Compiler is in a position to collect

information about the program and to perform certain functions as a simple,

inexpensive compilation by-product that would otherwise require substantial

and largely redundant software. Furthermore, since the Compiler must be

used during the course of program development, certain administrative

functions may be performed by it unconditionally, possibly unbeknownst to

users, that would otherwise require some addi'tional level of control or

conventions to achieve. Accordingly, the Compiler shall incorporate certain

of these functions to reduce overall APSE development costs and to insure

that the tIAPSE system when delivered will incorporate those capabilities

available in existing systems which, if lacking, might create a first

impression of Ada and its support software that would be detrimental to its

continued usage. These additional facilities are identified below.

3.2.5.1 Source Reformatting

The Compiler shall produce on option a reformatting representation of the

input program. This representation shall be selectable in source object

form as well as in listing from . The structure of the program as indicated

by declarations, program flow statements, procedure bodies, and BEGIN-END

blocks shall be made clearly visible by source indentation. Nesting levels

shall be indicated for each nest/unnest association. Source included via

the INCLUDE pragma shall be displayed as selected. Source positional

numbering used by the Compiler to relate various stages of the intermtodiate

and final program representations to the source shall be noted on the

listing. This same num~bering system shall allow the user to express program

position to the debugger.

..2.5.2 Statistics Collection

Although the SOW explicitly requests collection and reporting of program and

compilation statistics, the Compiler shall support a facility to implant

runtime code or hooks to permit collection of dynamic statistics and timing

information. Included in the facility is path entrance verification. The

Vol 5
3-8



intent is to assist users in both program checkout and performance tuninb.

Additionally, the Compiler shall permit the collection of compilation anu

error frequency statistics for administratively monitoring the error

proneness of the Ada language features.

.3. Program Flow Description

As a fallout of the flow analysis required for comprehensive optimization, a

program flow graph description shall be produced to accomodate path entrance

statistics as well as automatic flow documenting tools.

,.2.5.4 Language Modularity

In recognition of the fact that the Ada language is a very new development

and is pioneering new facilities in a higher level language such as generic

procedures, comprehensive exception handling, built-in tasking and

non-trivial operator and procedure overloading; a concerted effort will be

made to provide flexible language analysis algorithms and hence accomooate

changes to the language in the advent that ambiguities or omissions are

discovered.

3.2.5.5 Retargetability

To promote retargetability, a standard relocatable object format shall be

developed. This format shall be independent of the target computer word

size. In addition, to minimize cost, a standard relocatable object

formatter shall be oesigned for the Compiler and linker atio delivered as an

allciional Library utility for use by later APSE programs that need to

construct relocatable objects. Similarly, a stanoar assembly lister

capability shall further reduce the cost of future retargetings.

3.2.5.6 Listing Aids

As interactive program development increases, the need exists for efficient

mechanisms for the perusal of listings at conversational terminals. Toward

this end, the various Compiler listings shall be distinguished from each

other by a listing code convention that will allow the user to easily locate

and list particular kinds of listing output. This facility shall support

$.he scanning of a compilation listing to determine the existence and cause

of any diagnostic messages.

Vol 5

3-9



j.2.5.7 Environment Simulation Support

A consideration in the design of program and package interface files and the

debug tables produced by the Compiler shall be to satisfy the anticipated

requirement for sufficient description of a program's data base to permit

the development of environment simulation programs and data

recording/reduction tools.

3.2.5.8 Object Version Genealogy

One of the iniportar.t functions required during the development of large

systems is one of configuration management. The SOW indicates that the

MAPSE will assist managers in controlling and identifying configurations.

In support of this function, the Compiler shall include in the generated

relocatable object tracing information that shall describe the derivation of

the object program. Included in this information shall be the version of

all input files (original source, INCLUDEd source. Library units) as well as

that for the Compiler itself.

3.2.5.9 Compilation Order Validation Information

In conjunction with the above described information, the Compiler shall

support the Linker as necessary to permit detection of attempts to combine

object programs that possess incompatible interface specifications. This

can arise because different descriptions were used or, for example, if a

called procedure's specification was changed since some caller was last

compiled.

3.2.5.10 System Usage List

When a program is compiled, each name referenced from a Library unit shall

be recorded in the relocatable object. An option of the Linker shall be to

process this file containing the output from each compilation in a system,

purging obsolete compilation data, ana sort it in a user specified manner.

Sorted and printed, this data will provide a handy concordance of the usage

of Library unit names by compilation.

Vol 5

3-10

0-00 - fw .-At



3.2.5.11 Symbolic Maintenance Facilities

The Compiler shall have an extensive capability to monitor symbolically its

own operation. Symbolic dumps of the Compiler's data base shall be a

built-in function of the Compiler. The Compiler shall provide the ability

to trace its operation. These maintenance functions shall be controlled

Oynamically to permit dumps and/or traces within selecteu phases and durin6

the processing of selected program statements.

3.2.5.12 Reliability

The Compiler must be reliable. Whenever there is a switch from an existing

language or manner of operating to new techniques, the effectiveness of the

new system is of utmost importance.

3.2.5.13 Maintainability

Several factors affect the maintainability of a large system such as an Ada

Compiler. Perhaps most importance of these is that all components of the

system--or compiler--are designed with a consistent philosophy. This will

be done. The Ada language shall be exploited to "package" the external data

base of the Compiler, to encapsulate symbol table entry addition and

deletion, and to modularize the Compiler components. As the Compiler will

be implemented in Ada, the Compiler shall be used as a substantial

regression test of its viability.

The Compiler shall contain an integrated symbolic debugging facility to

assist maintenance personnel in the location of Compiler malfunctions, to

permit temporary corrections and to validate changes. This facility will be

controllable at several levels of granularity. Traces ana data dumps may be

requested at the highest level by command option. At the finest level,

traces and dumps may be selected by individual phase and statement using

maintenance pragmas. Additionally, the Compiler shall interface with the

symbolic debugger by the generation of special debug tables to further

improve the maintainability of the Compiler.

Vol 5
3-11

/cV



3.2.5.14 Performance Characteristics

The Compiler shall be designed to compile a nontrivial Ada program in 256K

bytes of memory at a compile speed in excess of 1000 statements per minute.

3.2.5.15 Human Performance/Engineering

The Compiler shall be user-oriented. The diagnostics message facility will

be selected to accurately pinpoint the location of erroneous source and to

identify the offending constructs. Listings shall be clearly

cross-reference to original source position. Optimizations, which are often

confusing to novice and sophisticated users alike, shall be described with

helpful messages in the assembly listings.

Recognizing the potential impact of the Ada compilation order requirements,

the Compiler shall inform the user of potential and real order violations.

3., DETAILED FUNCTIONAL RLQUIREMeNTS

This section describes in detail the functional organization of the Aaa

Compiler. The Compiler comprises a set of memory-resident utilities

referred to collectively as the EXEC and fourteen functional phases. The

phases, in general, gradually phase by phase transform an Ada program from

source object form into a relocatable object. Some of this transformation

is performed by processing data retained in memory between phases; the major

portion of the transformation is performed by reading a file representation

of the program, traditionally called IL for intermediate language, massaging

the program representation to parse the various language constructs,

organize the program description first for optimization ano then for code

generation, mapping the program from a tree form onto the target computers

instruction set, and, producing the relocatable object suitable for linking

by the MAPSE Linker and eventually executing.

The compiler is very modular in structure and the arrangement of the various

phases into overlay segments is quite flexible to accommodate a wide

spectrum of host memory resources. The organization pictorially is

presented in Figure 3-3.

Vol 5

3-12

-.- .2F o . ?



flit

InI

3-1-



The Compiler shall be written entirely in the Ada Language and will be host

independent except for certain table representations which will be hand

allocated to reduce the memory requirements of the Compiler. All interface

data declarations will be in packages. To the extent possible the

declarations will be described using compile formulas based upon the target

attributes.

3.3.1 Compiler Executive - EXEC

The Compiler is structured as a tree with a resident root section and

several levels of branches or phases. The root section is called the EXEC

and it contains the routines and data that are required throughout the

compilation process. Although a small section of the EXEC may be thought of

as the Compiler main program, the EXEC is composed largely of sets of

completely independent procedures.

3-.3.1.1 Inputs

The Compiler is invoked with a set of options indicating the processirlb to

be performed and a list of object names identifying the source, libraries,

listing, and relocatable objects to be used for this compilation.

3.3.1.2 Processing

Functions that are supported by procedures in the EXEC are:

1. Sequencer - Once the compile options have been determined, the

various phases of the Compiler required for this compilation must

be loaded in the proper order and executed.

2. Sp3ce Management - The Compiler has special requirements for

maiotaining the Compiler resident data base; these functions shall

be concentrated in the root. Any requirement for cross-phase heap

space shall be handled through these routines.

3. Listing Routines - A standard set of listing generation routines

shall be included as part of the EXEC. Included among the

functions supported shall be title and subtitle settings, line

printing (including pagination control), listing coding, page

ejecting and line spacing, and miscellaneous formatting routines.

Vol 5
3-14 16

_________ .1



4. Diagnostic Routines - A common set of routines shall be used by all

Compiler phases for the reporting of Compiler diagnostics. This

routine shall utilize a phase dependent message description array,

shall permit insertions into the message of source names or other

character strings, shall interface with the command level message

brevity control, shall save diagnostics for later sorting by source

line key for interspersing or separate printing as selected, and

shall maintain counts for collection of error frequency statistics

and reporting in the compilation summary listing.

5. Symbol Array Package - All posting of entries into the symbol array

and searching for prior entries are accomplished through these

common package routines.

6. Debugging - The Compiler shall contain extensive symbolic debugging

facilities for assisting in its own development and maintenance.

These routines shall be included as an integral part of all

production compilers but shall be arranged in a fashion so as to

not increase compile space requirements except when enabled.

3.3.1.3 Outputs

A compilation control record shall be created by the EXEC which will contain

the list of objects to be processed and/or created and the options used to

control the various phases' processing.

3.3.2 Lexical Analysis - LEX

LEX is the lexical analysis phase of the Compiler, its major function is to

read the Ada source program and encode the entire program as a sequential

set of tokens and write a token file. In addition, LEX performs scope

recognition and begins building the symbol table structure, builds the Name

table, and builds the Context Specification table and the Unresolved-fianie

table.

3.3.2.1 Inputs

The input to LEX is the Ada source program being compiled. The elements of

the predefined language environment (e.g., package STANDARD) are an implicit

Input to LEX but they are not processed as normal Ada program source input.

Vol 5

3-15

/'(8i



j.3.2.2 Processing

The major functions of LEX are outlined below.

. Source to Token Transformation

The entire source program is read, all lexical units are recognized,

converted to tokens and written to the Token file. The following Token

types are defined:

1. Reserved-Word Token - Every Ada reserved word shall be converted to

a reserved word token; the reserved word shall be specified with a

reserved word number. For purposes of the token file, special

character delimiters and compound symbols (e.g., ' '+' '-' '/'

,I, ,<(, ,<:,) shall be treated as reserved words.

2. Attribute Token - The predefined language attributes ('BASE, 'SIZE,

'FIRST, 'LAST, etc.) shall be converted to attribute tokens, the

particular attribute being specified with an attribute number.

3. Line Number Token - A line number token shall be output preceeding

the first token of each line. The record key of the associated

line shall be output as the line number, if the source program has

no line numbers, they shall be created starting at 1 in increments

of 1.

4. Name Token- All user names (or identifiers) shall be converted to

Name tokens, which will contain a name-number to uniquely identify

every name in the compilation unit. With the name-number and the

Name table the actual character string of every name can be

retrieved.

5. Literal Tokens - Literals shall be converted to a canonical form

and passed in variable length Literal tokens. The following types

of literal tokens shall be used:

a. Numeric integer

b. Numeric real

c. Character literal

d. Character string literal.

Vol 5
3-16(f



6. Resolved-Name Tokens - For all references that are fully resolved

in LEX, the name is replaced with a resolved-name token which

contains a symbol table pointer to the resolved symbol table

attribute entry. The actual name of the item is still available

through the name-number and the Name table.

3.S.2.2.2 Name Table

A Namie Table shall be built that will contain every unique name (or

identifier) used in the compilation unit as an actual character string.

Each unique name shall be given an integer name-number assigned from some

initial value in increments of 1. Associated with the Nanse Table shall be a

hash table and a Name Pointer Table. Given a name-number, the actual nawe

and every symbol table attribute entry associated with that name can be

accessed.

3.3-2.2.3 Skeleton Local Symbol Table

LEX shall perform partial syntactical analysis - sufficient to recognize the

declarations of objects, types, subtypes, subprograms, packages, tasks,

blocks, loops, exceptions, and renaming declarations. Symbol table entries

shall be posted for each declaration - since the attributes of these entries

are, in general, unknown in LEX, the attributes shall not be filled in and

only skeleton symbol table entries shall be built. The main purpose of the

skeleton symbol table in LEX is so that resolution may be performed on all

simple local name references.

3.3.2.2.4 Unresolved Name Table

During the lexical analysis process, name resolution is attempted on all

user identifiers using the current local symbol table. Where an unambiguous

resolution can be made, a resolved-name token is output for the reference

(no semantic check on the correctness of the reference is possible in LEX).

Where an unambiguous reference cannot be made the name is output as an

unresolved name token and the user name including all qualifiers, is entered

in the Unresolved Name Table. At the end of LLX, the Unresolved Name Table

shall contain a complete list of all user names that are potentially defined

in the compilation units specified in the context-specification (the "WITH

unit-names" and also the "NEW generic-names") of the program being compiled.

Vol 5
3-17

A-.



3.3.2.2.5 Context Specification Table

The context specification table, built by LEX, shall contain the name of

every Library unit mentioned in a "WITH clause" and the name of every

generic unit being instantiated ("NEW generic-name"). This table shall be

used by LIBI for extracting from those Library units all possible

declarations and specifications need by this compilation.

3.3.2.3 Outputs

The outputs of LEX are:

1. Token File

2. Skeleton Symbol Table -- local declarations

3. Name Table

4. Unresolved Name Table

5. Context Specification Table.

3.3.3 Library Specification Input - LIBI

LIbI is a small phase and runs between LEX and RESOLV - lexical analysis and

semantic analysis. The function of this phase is to extract from the

Library units specified in the context-specification (the "WITH unit-names")

all those declarations and specifications that are potentially required by

the program being compiled and to post these Library unit declarations and

specifications to the symbol table.

3.3.3.1 Inputs

The inputs to LIBI are the Program Library, the Context-Specification Table

and the Unresolved Name Table - these latter two tables are produced by LEX.

3.3.3.2 Processing

The Context-Specification Table contains the name of each Library unit

("WITH unit-name") that must be accessed. Each Library unit is processed

against a sorted Unresolved Name Table and all those declarations and

specifications that are potentially needed to complete the resolution

process are extracted from the Library unit and posted to the symbol table.

Vol 5
3-18

aiI



Note that this process may bring in unrequired Library unit specifications

but amon, thode extracted shall be all those needed to complete the

resolution process.

3.3.3.3 Outputs

The output of LIBi is an updated symbol table. The skeleton symbol table

built by LEX shall contain attribute entries for all those entities defined

by the program being compiled (the contents of these skeleton entries will

be incomplete).

LIBI shall extend the symbol table with every potentially referenced

unresolved entity defined in one of the Library units specifieu in the

context-specification ("WITH unit-names").

3.3.4 Resolution and Semantic Analysis - RESANL

RkSANL performs the syntactical and semantical analysis of the program,

completes the building of the symbol table, completes the name and operator

resolution process, performs overloaded resolution and generic instantiation

and optionally produces the cross reference file.

3.3.4.1 Inputs

The inputs to RESANL are the following:

Token File - The token file is produced by LEX and is an encoded

representation of the full source program in token form.

Symbol Table - The symbol table contains the attribute entries of all

the ADA entities defined or required by the program being compiled. The

symbol table entries of all those entities defined by the program beinb

compiled are as yet incomplete - their structure is present only.

3.3.4.2 Processing

RESANL rereads the entire source program, which is now in token form,

completes the symbol table entries for all local declarations, performs

resolution and semantic analysis on each statement and produces the

intermediate representation of the source program (L). The ajor functions

of RESANL are outlined below.

Vol 5

3-19

/ IA



Declaration Parsing

All declarations are syntax checked and fully processed. Final name

resolution is performed and the attributes of the skeleton symbol table

entries posted by LEX are completed. Lrrors are diagnosea and suitable

defaults chosen where possible.

Declarations within generic units may not be fully resolved at this time

since they may depend on generic parameters. However, the symbol table

entries for such declarations will be structurally complete since they will

reference the generic formal parameters.

All declarations are optionally written to the cross reference file.

Note that since certain declarative attributes (e.g. bounds or ranges) may

include expressions and may not be compile-time constant, general expression

analysis is required during declaration processing.

The constant values of constant declarations will be posted to the symbol

table.

Initial value expressions for local data will be converteo to IL as

assignment statements with the 'REPL' operator.

Variable expressions specifying array bounds will be convered to IL as

assignment statements to the array's dope vector. i

Constant initial values of non-generic package data wi.ll be witten to the

preset file - this data does not require dynamic initialization at

elaboration time but is elaborated at load time.

Constant initial values of generic package data will be converted to IL as

special preset assignment statements with the "PRESETREPL' operator. At

instantiation of generic packages the special preset assignments will be

converted to normal preset file entries.

Statement processing

All statements are syntactically checked and name resolution is performed.

Expressions are processed by the expression analyzer (which performs name

and operator resolution on the expression) semantic checking is performed

and the statement is converted to IL for output.

Vol 5

3-20



Expression processing

Expression analysis is the most significant processing performed in RLSANL.

Expressions are syntactically checked and an expression tree is built. The

expression tree is scanned and name resolution is attempted ignoring

context. User identifiers are either unambiguously resolved (only one

possible visible definition - it may or may not be semantically valid),

ambiguously resolved (more than one possible definition requiring further

analysis in context) or unresolved (undefined identifier - immediate error).

Operator resolution is not performed on this first scan of the expression

tree. If any of the user identifiers are undefined, diagnostics will be

issued and the statement will be deleted; otherwise, further scans are made

up and down the expression tree attempting resolution on all operators and

overloaded functions and literals - here use is made of the context of the

expression along with the possible multiple resolutions found on the first

scanl.

If unambiguous resolution cannot be accomplished (either the ambiguity of

some references could not be resolved or some of the operators were

unuefined), the errors will be diagnosed and the statement will be deleted.

The resolution of procedure and entry calls will be handled very much like

function resolution except that the call has no context to resolve an

ambiguity.

After each statement is successfully resolved and checked semantically, it

is reformatted as IL and output to the IL file. The cross reference file is

optionally written for each reference.

Generic Instatiation

Generic instantiation is performed in RESANL. For each generic

instantiation the generic parameters are resoived and identified. The

generic specification of the generic aeclaration is accessed from the

generic declaration file or from the Program Library - generic

specifications may have been extracted from the Library unit specifications

by LIBI or may have been created by generic declarations processed

Vol 5
3-21

/ /



previously in the program being coitiiled. The generic specification

contains symbol table entries for defined and referenced items ana contains

structurally complete IL for all statements within the generic declaration.

The generic specification is read in, beneric actual parameters are

substituted for generic formal parameters, any new symbol table entries

required by the generic are posted and the statements of the generic

declaration are processed through the normal analysis and resolution

procedures in RESANL.

Ueneric Declaration

Special processing is required for generic declarations. The result of the

generic unit may have to be eventually written to the Program Library file

as part of the program's Library unit specification or the generic unit may

be instantiated later in the program being compiled. While processing a

generic declaration a special mode will be in effect - the main difference

between "generic-declaration" mode and normal mode is in the resolution

process where certain references may remain ambiguous until generic

instantiation.

When the processing of a generic declaration unit is complete, the IL and

symbol table needed by the generic will be optionally written to the generic

declaration file for later instantiation in this program or for use in

writing the Library unit specifications for the program.

J.3.4.3 Outputs

The outputs of RESANL are the IL file, a completed symbol table and al

optional generic aeclaration file. In addition, RESANL also optionally

outputs a cross reference file (as a function of the cross-reference

compiler option).

The cross refrence file is written by RESANL on a compiler option and

contains an entry for every aefined and referenced user identifier in the

program, for all object references the entry indicates whether the reference

was an assignment to the object or a use of the object. The cross reference

file is used to produce the cross reference Set/Use listing.

Vol 5
3-22



The cross reference record is defined below.

type CRREFTYPE is (USE, SET, DECLARE); type CROSS REL is

record

CRITEM: SYMPTR: -- symbol table pointer

CRTYPE: CRREFTYPE; -- used, set or defined

CRLINE: SHKEY; -- line number

end record

:).3.5 Allocator - ALL

3.3.5.1 Inputs

Symbol table - resident - (See Appendix A)

. Processing

The allocator is responsible for mapping the various data items which have

been declared in the source program onto target machine storage locations.

The allocator must honor address specifications and record type

representations as well as the pack pragma. (The means by which the

allocator is informed of the existence of a pack pragma is through a flag in

the symbol table).

The ailocator must determine the representation to be usea for the various

types which appear in the symbol table. This includes determining the size

of each item which has no explicit range given in a record type

representation and no explicit length specification.

Similarly, the allocator must assign relative storage locations to the

various objects in the symbol table, honoring any alignment clauses which

may be present. The addresses assigned by the allocator are relative to the

start of some block of data, (for example, the local stack frame).

The allocator must take into account the effect of variants on both the

packing of items into storage units and the computation of addresses.

Alignment requirements imposed by the target machine should be taken into

account, also.

The allocator is target dependent to a certain extent, but will be

parameterized according to the storage unit size, address granularity,

alignment requirements and data types available, to maximize retargetability.

Vol 5
3-23



. .5.3 Output

Symbol table - (See Appendix A) - Location specifiers and position fields

filled in.

...6 Constraint Analysis Processing - CHECKS

CHECKS performs constraint checking analysis - creating constraint IL for

all the required CONSTRAINtERROR and NUMERICERROR checks. CHECKS is not

concerned with the other Ada exceptions since they are not handled directly

in the generated code. CHECKS reads the 1L file produced by RESOLV and

writes a new IL file. In addition, CHECKS produces the Flow Reference List

file (FRL).

3.I.b.1 Inputs

The inputs to CHECKS are the IL file produced by RESOLV and the resident

symbol table.

3.3.6.2 Processing

CHECKS reads the entire IL file and processes each statement in turn.

Constraint IL shall be inserted where appropriate and the IL file is

rewritten.

The SUPPRESS pragma's and Compiler options shall be honored to suppress

constraint checking.

Constraint checks shall not be inserted where the error cannot occur; e.g.,

I := J; No range check shall be inserted if I and J are of the same type or

if J's range is a subset of I's range. However, duplicate constraint checks

shall in general be inserted by CHECKS - these shall be removed by the

optimizer in its normal common sub-expression analysis, folding could

eliminate further unnecessary constraint checks.

The required constraint checking analysis is outlined below.

3.3.6.2.1 CONSTRAINT ERROR Checking

Assignment Statements - Constrained Value Computation - A range check is

conditionally inserted at every assignement statement or evaluation of an

explicitly constrained value; this includes initailizations, return

Vol 5
3-24

N, €



statements, qualified expressions, type conversion, ana parameter

associations.

Array Referencing - Bounds checking shall be conditionally inserted on every

array reference.

Array Assignments/kxpressions - Array size checks (number of elements) shall

be conditionally inserted at every array or array slice assignmfent or

expression.

Access Variable Checks - Access value checks against the null value shall be

conditionally inserted at every use of an access variable for object

referencing.

Discriminated Component Referencing - Discriminant value checks shall be

conditionally inserted at every reference to a component of a discriminated

record.

6.3.b.2.2 NUMERICERROR Checking

For the numeric error exceptions (civide by zero or hardware overflow)

CHLCKS does not insert explicit constraint IL but rather marks each IL

operator which could potentially cause such an error.

On a target machine where the hardware uoes handle divide by zero or

computation overflow with a trap (i.e., where explicit instructions were

required to test for these conditions) and where such checking was requirea,

the code generator shall use the numeric error flag in the IL operator to

control the generation of code to perform the overflow checkin6.

Numeric error checking is being handled in this way for two reasons - so as

not to unduly increase the size of the 1L. and so as not to burden the code

generator with the analysis required to determine where hardware overflow

needs to be tested.

3.3.b.2.3 Flow Reference List File

The flow reference list file is written by CHECKS as it reads the IL file;

the file contains an entry for every location in the program to which

control might be transferred (definition points) and an entry for each

Vol 5
3-25

7X4

WON-- - - . - --



possible transfer of control to such locations (reference points). The

record contains both the scope of the entity and the entity being referenced

or defined. Definition points result from labels, procedures, functions,

and task entries. Reference points result from 'UOTO's (explicit and

implicit), procedure calls, function calls, and entry calls.

. Outputs

The output of CHECKS is a updated and rewritten IL file and the Flow

Reference List file. The structure of the Flow Reference List file racord

is shown below:

type FLOW REF TYPE is (REF, DEF); -- reference or definition

type FLOWREFREC is

record

FRLSCOPE: SYMPTR; -- symbol table pointer of most

-- inclusive scope

FRLSYM: SYMPTH; -- entity being reference or defined

FRLTYPE: FLOWREFTYPE;

end record;

3.3.b.4 Special Requirements

The constraint checking analysis could logically be done in RESANL as the IL

statements are output. However, while much of the constraint analysis is

straightforward some of the analysis - especially involving array and array

slice expressions and assignments - is quite complex and the space

requirements of a combined RESANL and CHECKS could be excessive.

:.3.7 Target Optimizer - TOP

This phase of the Compiler is used to tailor the IL to the target computer

and is expected to greatly enhance the benefits derived from the

target-inuependent global optimizer.

3.3.7.1 Inputs

TOP shall read the IL file produced by RESANL and make extensive use of the

resident symbol array data. The format of this data is described in

Appendices A and B.

Vol 5
3-26

BU- ---



3.3.'1.2 Processing

The essence of the TOP functions is to read the IL produced by the semantic

analysis phases and perform transformations on the IL to orient the IL to
the target computer and hence the optimizations performed by the remaining

optimizer phases. The form of the IL input to TOP is the saem as that

produced by TOP. However, for any particular target computer, certain

{operators way never appear in the IL after the TOP phase. Conversely, some

IL. operators may only be produced by TOP.

Transformations that may be made by TOP depending on the target selected are

described below:

1. Linearize subscripts to best utilize the target's indexing

capability.

2. Combine shifts, scaling, and powers of two multiplication and

division as appropriate to the number representation of the target

machine.

3. Expand object references according to the target characteristics,f

including inserting explicit ad(Iress constant references, addrebs

unit multiplications, extraction/deposit IL. operators, observing

displacement size constraints, etc.

4. Orient local data references depending upon the target machine' s

stacking mechanisais.

5. Tailor procedure calls and parameter passing to the conventions of

the target.

6. Expand IL macros in a target-dependent manner.

7. Parameterize the IL and IL operator descriptor tables for the

target machine. This parameterization will include defining the

number and characteristics of the hardware registers.

8. Convert constraint checks and loop control into the target-

specific operators for simple ifs, gotos, and assignments.

Vol 5
3-27



3.3.7.3 Outputs

The IL is written out in the same form as read and as described in Appendix

B.

.3.8 Flow Analyzer - FLOW

The primary difference between a cross-statement (basic block optimizer) and

a full global optimizer, as described in the followin& sections, is that

statements thath result in program flow or subprogram calls will restart the

optimizer's data base. The processing that makes global optimization

possible is the analysis of program flow and the collection of information

regarding the existence of variable object references or assignments within

the basic blocks connected by the flow. This function is called "flow

analysis" and is performed by FLOW, the initial target independent global

optimizer phase.

3..b.1 Inputs

The input data base used by FLOW are the FRL described in section 3.3.**3

and the symbol array and IL described in the Appendices. The data created

by FLOW are described below:

The out of scope label reference list (occuring in Ada only as a result

of optimized case and raise statements), the variable set ana used list

for procedures and loops are simply an array of indices into the symbol

array. A slice of the array corresponds to the range of a loop or

procedure. The beginning and length of the slice is retained in

procedure attribute entries or in the loop descriptor list (described

below) as appropriate.

plrl:array(1..maxplrl) of sym_ref; - proc label ref list

prvl:aryiy(1..maxprvl) of sym_ref; -- proc ref variable list

psvl:array(1..max_psvl) of symref; -- proc set variable list

lsvl:array(1..maxsvl) of sym_ref; -- loop set variable list

type looplist is

record

loopstart:ilref; -- IL index for beginning of loop

loopend:ilref -- IL index for end of loop

Vol 5
3-28 V



isv1_ix:integer; -- lsvl index for initial set variable

lsvlno:integer; -- count of variables set in loop

loop_ab:symnref; -- loop top label

end record;

lopl:array(1..max lopl) of loop list; -- loop descriptor list

,.3.8.2 Processing

FLOW is separated into three separate functions; these functions are the

computation of reference counts, code straightenin6 and list generation.

3.3.8.2.1 Reference Count Computation

The initial function is to read the Flow Reference List (FRL) produced by

CHECKS into memory and link all references to procedures and/or labels by

containing scope. Once this linking is complete, each chain is followed to

its end, nesting as necessary at a procedure call, and incrementing the

reference count for any target declared in the scope of the chain being

chased.

3.3.8.2.2 Code Straightening

Upon completion of the reference counting, FLOW shall read the IL, a scope

at a time, and produce a straightened graph of the scope. This

straightening of the program flow insures that the assumptions made by the

main processing of FLOW are indeed valid. These assuiptions are:

1. A forward branch encloses conditionally executed code

2. A backward branch encloses a loop.

The straightening algorithm employed is that described in "Analysis of

Graphs by Ordering of Nodes", Earnest et al, Journal ACM, Jan. 1072. The

algorithm performs the straightening by first building the flow graph

description as described in Appendix E (see types block and path). The

preferred ordering is then computed and then the IL is relinked in the

straightened order. The relinking process does not recopy the IL but simply

inserts branch, label and link operators as necessary to reflect the new

order.

Vol 5
3-29

-i



A short example will serve to illustrate the effect of this straightening.

In the diagram below, the flow of a trivial program is presented on the left

before straightening, on the right after straightening

3 3

Figure a-4. Code Straightening

In the graph on the left, block 2 appears to be conditionally executed

whereas blocks 2 and . appear to be within a loop. Assignments in block 2

would prevent subexpressions using the changed operands from being found

common from block 1 to when in fact no interference could result. The

straightened graph would of course allow the optimizer to correctly

recognize that block 2 did not exist on any path from 1 to 3. Although some

direct benefit results from this reordering (the deletion of branches) the

primary benefit accrues from improved optimization by the remaininb phases.

3.3.8.?.3 List Generation

The primary purpose of this section of FLOW is the productior, of the lists

utilized by the remaining phases of the optimizer. these lists are the

Label Reference List (containing 6ach program branch or call), the procedure

Vol 5
3-30

- - L-



lists (containing the variables referenced or set by the procedure) and the

loop description lists including the variables set within the loop. The

bulk of the processing however is the actual flow analysis which drive the

building of these lists. The flow analysis algorithm used is the evolution

of the Linear Nested Region Analyzer (LNRA) scheme developed by CSC and

first used in a production compiler for JOVIAL/J3; the most recent of which

was the JOCIT/J System Compiler. This algorithm is quite fast and requires

less data than most graph analysis algorithms, such as those of Tarjan L2bj

The lists are produced by processing the IL, scope by scope, adding

variables to the appropriate lists depending upon usage context. As a

procedure entry is encountered, the present list indices are recorded in the

procedures attribute entry. At exit, the count of the entries added to the

various lists are recorded. At completion of the list, a procedure symbol

table entry will appear as follows:

SYMBOL TABLE VARIABLE "ETAISED LIST

P BEGIN

FgrROCEDURE - Pr END sTO X P X SET

VARIABLE X w p s TO Y AS aT

enonee, h eeece cut, dceetd Whn lbe i

i VARIABLE Y
.s BEGIN

PROCEDURE S EN

VARIABLE Z

Figure 3-5. Procedure List Pointers

Similar processing occurs while processing labels. As a label reference is

encountered, the reference count Is decremented. When a label is

encountered, the fact is noted in its attribute entry. If the reference

count is not zero, backward branches exist to this label for all outstandinb

references. The current lsvl index is recorded. A reference to a label

already encountered closes a loop. The loop descriptor is modified to

reflect the loop closure and lsvl count is recorded.
Vol 5
3-31



3.j.8.3 Outputs

The output of FLOW is the IL as described in Appendix B, the symbol array

described in Appendix A, the flow graphs described in Appendix E and the

memory-resident lists described in 3. .8.1.

3..9 Optimizer - OPT

OPT performs the major program transformations which result both in reduced

program code space and execution time savings.

3.3.9.1 Inputs

The input to OPT is the symbol array and IL described in the Appendices and

the lists created by FLOW and described in 3.3.8.1.

3.3.9.2 Processing

Operands are viewed as having a identifiable value throughout the OPT

phase. This value may be known at compile-time to be a constant or to be

undeterminable. When values are assigned, the variable assigned becomes a
synonym for the value and hence improves the possibilities for common

subexpression elimination. For example,

.... x+y --reference to an expression

z:=x: --z becomes a synonym for x

.... z+y; --expression need not be recomputed

Note that if in the above sequence x had been assigned a new value

immediately after the assignment to z, the common expression recognition has

not been affected. This "value folding" is the basis for these

optimizations.

As each scope is entered, a unique value number is assigned to each

variable. If the variable is constant or is initialized to a constant

expression during the elaboration, the constant value is recorded as its

synonym. When an operand is referenced, its present value number is posted

to a search list. Each expression is also posted to the search list by

creating a value number from its operator and present operand values.

Vol 5
3-32



As loop boundaries and forward branch targets are encountered, the search

set must be pruned for the range of the enclosed region or intersected with

joining paths.

The optimizations performed are:

Value Folding - Recognizing that an assigned variable is a synonym for the

expression assigned.

Common Subexpresion Elimination - Recognizinb that an expression has been

computed previously and may be used without recomputing.

Constant Arithmetic - Performing at compile-time all expressions whose

result values are computable because of constant operands. Constant

conversions and relationals are included in this function.

Code Deletion - Code which cannot be reached (often caused by the

recognition of relational tautologies or contradictions) shall be aeleted.

Unreferenced proceaure code shall also be deleted.

Inline Procedures - Procedures referenced by a single call or where the

inline expansion is smaller than the call code shall be expandea in line.

Branch Optimization - IF THEN GOTO shall be transformed in a manner to

eliminate a conditional branch around a branch. Branches to a label

occurring immediately in front of the label shall be deleted. Branches to

branches shall be optimized to transfer directly to the final branch point;

the intermediate branch shall then be deleted if it is now unreachable.

Miscellaneous - The local optimizations listed below shall be performed.

x'1 xZ x

x/1 x

x'O 0

x/O diagnosed

x/X 1

x+O = X

x-Os: X

Vol 5
3-33



x**l == X

x*2**y == x scaled y

X=X true

x x false

Redundant Constraint Checks - A constraint check shall be deleted when the

optimizer can determine that the check is unnecessary because of previous

checks or compile time determinable values and relations. This optimization

shall be performed by extending the value folding concept and retaining

value-range realtionships essentially as optimizer generated assertsions.

These assertions shall be associated with the value numbers at assignements,

as constraints checks are passed and by the derivation of values from the

paths taken at if and case statements.

3.3.9. Outputs

The output of OPT is the IL files.

3.3.10 Loop Processor - LOOPEh

The final global optimizer phase performs the analysis of loop structures,

code movement from loops and dead variable analysis. Many of the LOUPER

optimizations are oriented more towards execution tim savings rather than

program space reduction.

3.3.10.1 Inputs

The LOOPER uses the IL written by OPT, the lists created by FLOW and the

symbol array.

3.3.10.2 Processing

The functions of this phase of the Compiler are to analyze the loop

structures of a program as described by the LOPL list prepared by FLOW and

the context of blocks enclosed by the loop paths. The optimizations

performed by this phase are code movement, strength reduction, test

replacement, loop collapse and dead variable analysis.

Vol 5 /1

3-341 /



3.3.10.2.1 Invariant Code Movement

Expressions computations will be moved from within loops when the operands

are not modified within the loop.

3.3.1U.2.2 Strength Reduction

Operators such as multiply and exponentation will be converted to addition

and multiply, respectively, when the operands are iteratively incremented in

a loop.

. . Test Replacement

When the only uses of loop parameter values are in a strength reducible

context, as occurs when the parameter is used as an array index; the source

values for loop bounds are never used except of controllinb the loop. By

creating a parallel loop, with the loop initial value, incremental value and

terminal value modified as required by the strength reduced reference, the

original test and assignments may be deleted.

i.3.10.2.4 Loop Collapse

When a loop contents consist solely of its own loop control code and an

inner loop, there are often circumstances where the loop control may be

combined for the two loop into a single loops. This situation is not

unusual when performing matrix operations. The conditions to be satisfied

for loop collapse is that the loop parameter values obey the following

relationship:

o The repetition count of the inner loop is the same as the increment

value of the outer loop.

o The upper bound of the nested loop plus the nestea loop's increment

value is the initial value of the successive nesteo loop

invocations.

In general, this loop form cannot happen directly in Ada but may occur after

the application of strength reduction and test replacement.

3.3.10.3 Outputs

The LOUPER writes the IL file for COGEN.

Vol 5
3-35

t./



3.3.11 Code Generator - COGEN

The code generator reads the intermediate language (IL) produced by the

optimizer and generates the sequences of machine instructions necessary for

the object program to perform the operations specified by the IL.

3.3.11.1 Inputs

IL file - written by the optimizer or target dependent optimizer.

Symbol table - resident - produced or modified by the previous Compiler

phases (See Appendix A)

3.3.11.2 Processing

COGEN is responsible for selecting the code sequences necessary to perform,

in the target computer, the operations specified by the IL. Although the IL

is expressed in reverse Polish notation, code is not generateo directly from

the IL. Rather, a portion of the IL is read and used to construct an IL

tree which forms the basis for selecting code sequences. Thus code can be

generated in context.

An example of where context information obtainable from a tree

representation is needed is in the evaluation of relationals in IF

statements. On most machines there is no need to actually compute a boolean

value for the relational. It suffices to perform a test that sets the

condition codes, followed by a conditional branch.

The code generator is responsible for generating code that is locally gooo,

or can be made locally good by POST. The responsibility for the quality of

code on a global basis belongs to the optimizer.

The code generator may knowlingly choose to generate locally suboptimal code

if it is easier for POST to rectify the situation than for the code

generator to generate the preferable code sequence originally.Such a

situation can arise if adjacent instructions are generated from different

parts of the IL tree or by different routines in the code generator. One

such example is a test instruction that follows an instruction that has

already set the condition code correctly. It is certainly easier for COUEN

Vol 5

3-36 *'

A L . . *



AA19 981 COMPUTER SCIENCES CORP FALLS CHURCH VAF/9/
ADA INTEGRATED ENVIRONMENT 11 COMPUTER PROGRAM DEVELOPMENT SPEC--ETC(U)
DEC Al F30602G80 C 0292

UNCLASSIFIED RADC-TR-81-364 _PT_2 N

I *IhhhmmhEEohhI
I lflflfllflflml..fl



18.0111815

11W 125 III~~2.6
NI > Li Q\ II I

11112.0



to generate the test unconditionally than to keep track of previous settings

of condition codets, and it is not difficult for POST to remove such

superfluous tests.

The code generator is probably the most target-dependent phase in the

Compiler, because it must have the most intimate knowledge of what

instructions are available on the target and what the semantics of these

instructions are. Much of the logic in COULN shall be reusable for code

generator,- for different tragets, however. The creation of the internal

form of the IL and the tree-walking that drives the selection of code
sequences are largely machine independent. COGEN shall be designed so that

the target-dependent and target-independent sections are marked as such, and

can be separated due to their modular design.

COGEN is, to a large extent, language-independent. It is driven by the IL

and the symbol table, and is concerned with the internal representation of

data, rather than with source language operations aijch Ada types. Thus, the

code generator does not address such language issues as overloading and

generics. These are handled in the front end.

There are, of course, aspects of code generation that are peculiar to Ada.

These include the handling of tasking, exceptions, and some of the

attributes such as VALUE and IMAGE.

3.i.1.3Outputs

Code File

The code file provides the primary means of communication between COGEN and

POST and between POST and ASH. It contains sequences of machine instruction

tokens, together with other supplemental information that is used in theI

generation of the object module and the assembly listing.

The code file is, to a large extent, target independent, even though it is

Used to describe target machine instruction sequences. Much of the

supplemental information is valid regardless Of target. Some entries are,

by their very nature, target-dependent. The prime example of this is tile

instruction entry.

Vol 5
3-37



The following is a definition of the code file tokens in pseudo-Ada. It

should be noted that constraints are not specified, nor are incomplete type

definitions provided.

type CONDITION is new BOOLEAN;

-turns code on or off

type CONDITIONREF is access CONDITION;

type CODEFILETOKENENUM is (COMMENT, CONSTANT, ENDCOND, ENDFILE,

INSTRUCTION, LABEL, LINE, MACRO CALL START,

MACROCALLEND, MACROPARMOBJECT,

MACRO PAR IMMEDIATE, START_COND);

type CODEFILETOKEN (CLASS: CODE FILETOKENENUM) is

record case CLASS is

when COMMENT = >

COMMENT STRING : STRING;

-comment is character

when CONSTANT = >

CONSTANTVALUE : TARGETWORDTYPE; --target dependent

when ENDCOND I STARTCOhD = > --conditional code

CONDITION CONDITIONREF;

when ENDFILE > null;

when INSTRUCTION = >

OPCODE : UP_CODEENUM;

INSTFORMAT: INSTFORMATENUM;

-- target dependent fields

when LABEL = > --label symtab entry

LABELVALUE : LABELSYMREF;

when LINE = >

SOURCEKEY : SOURCEKEYTYPE; -source key

when MACROCALLSTART I MACROCALLEND >
MACROID : MACRO IDENUM; --macro "name" (target)

Vol 5

3-38

AI



when MACROPARM OBJECT >

OBJECT : SYMHEF; --macro actual parameter

when MACROPARMIMMEDIATE = >

IMMEDIATE : INTEGER; -macro actual parameter

end case;

end record;

The uses of the various entries are as follows:

COMMENT - used to pass information through to the assembly listing. A

comment might be used, for example, to indicate that the code

to follow was part of an exception handler

CONSTANT - used to cause a constant to be generatea in the code.

One such use would be to generate portions of a

procedure's preamble.

START COND and ENDCOND - are brackets that are used to delimit sections of

conditional code. Code that appears between these brackets is

suppressed if the condition pointed to by the brackets is set

to false. The conditional code feature allows one phase (say

COGEN) to generate code before it is sure whether the code is

necessary. Later on, when it is known if the code is needed,

a condition flag can be set. The following phase (POSl in

this example) can include or exclude the code based on the

flag's value.

One example of where this feature can be used is in allowing a

comaon subexpression to be copied at the point of its

computation in case it is destroyed before all uses have been

satisfied. If the copied value is ever needed, COUEN can

leave the condition on. If the code is unnecessary, the

condition is turned off and the code is deleted by POST when

it encounters the STARTCOND in the code file.

END FILE - marks the en6 of the code files.

Vol 5

3-39

/2



INSTRUCTIONS - contain the information necessary to format a

target machine instruction. This is a target-dependent

code file entry, although many of the fields are common

to the various targets. The representation shown here is

a generalized form.

LABEL tokens - denote label defintions. The two main purposes

for such tokens are that POST can take flow of control

into account, and that labels can be included in the

assembly listing.

LINE tokens - allow the source line to be related to the

generated code for that line. This is used both for printing

the source key in the assembly listing and to aid in Compiler

maintenance.

STARTMACROCALL - and ENDMACRO CALL are used to delimit the

parameters for Code File macros. The only code file entries

between the START and END are either of the two MACRO PARMs

described below. POST performs the macro expansion,

substituing the actual macro parameters supplied in the code

file. The macros available for a given target are determined

during Compiler design.

MACRUPARMOBJECT - is an actual parameter that is an object

whose definition appears in the sumbol table.

MACROPARMIMMEDIATE - is an immediate value which is the actual

parameter for a macro call. This code file type exists to

avoid cluttering the symbol table with constants that are used

in macros.

DOUBLEADCON, LEFTADCON, and RIGHTADCON tokens - are used to

cause address constants (adcons) to be output in the code.
DOUBLEADCON is used for targets such as the DEC-10 that allow

addresses in both halves of the machine word. LEFT ADCON and

RIGHTADCON are used to generate adcons in the left and right

halves of the target word, respectively. Only RIGHTADCON is

applicable to the IBM 370; the others are included in the

interest of retargetability.

Vol 5
3-40



3. .1 .4 Special Requirements

In order to simplify its task, COUL? may require that POST make certain

.improvements in the generated code. The improvements are target-dependent.

3.3.12 Post Code Generation Optimizer - POST

The post code generation optimizer which will be called POST) improves the

generated code by performing various transformations on the object code that

was produced by the code generator. Among these transformation are what are

commonly termed "peephole" optimizations, but more global optimizations,

namely branch optimizations and constant pooling are also performed.

31.3.12.1 Inputs

Code file - written by code generator.

3.3.12.2 Processing

The processing performed by POST includes code improvements that are both

machine-independent and machine-dependent in nature. Since the primary

input to this phase is the code file, which contains, of necessity,

machlne-specific information, this phase will require some modification if

it is to be used for a new target machine. However, much of the underlying

skeleton should be reusable for different targets.

In adaition to these sorts of code improvements, POST serves to make COUEN's

job easier in several other ways. Based on flags that the code generator

has set, conditional code is included or excluded by POST. (See .3.b. 3

Code File for a description of conditional code.) POST also expands Code

File macros.

POST first reads a portion of the code file into memory. Ideally, it shall

be possible to maintain the code for an entire procedure, task or package

body in core at one time. POST shall be able to work on as much code as

will fit, by reading until an end-of-body is encountered or until a size

limit is reached. The only negative effect will be that certain branching

optimizations will not be performed if a branch and its destination are not

in core simultaneously.

Vol 5
3-41 I'it _ _ __ 9



The instructions read in from the code file shall be maintained as a

doubly-linked list so that instructions can be inserted or deleted easily

(in the hope that the delections will outnumber the insertions).

Superimposed on this structure will be branch links that connect branch

instructions with their destinations.

Optimizations that are performed by this phase (depending upon the

characteristics of the target computer) are:

1. Constant pooling

2. Cross jumping

3. Combining adjacent instructions

4. Branch optimizations

5. Other optimizations

Constant pooling involves finding constants common. Constants shall be

pooled on the basis of their binary representations, rather than on the

basis of their types and source representations.

Cross jumping involves examining the point where different execution paths

merge (i.e., labels). If the instructions on the ends of the two paths are

the same, the instructions can be deleted from the end of one sequence,

provided that a branch is inserted to transfer control to the corresponding

point in the other sequence.

There are many opportunities for combining adjacent instructions on most

target machines. A number of machines have instructions which increment or

decrement a counter and then branch as a result of the counter reaching a

certain value. The code generator may generate separate instructions to

modify the operand and to jump. POST can substitute the single more

powerful instruction for two or more instructions which, together, perform

the same function.

Other examples of combining adjacent instructions include:

1. Deleting loads that immediately follow stores of the same operand.

2. Deleting explicit condition code setting instructions following

operations that set the condition codes.

Vol 5
3-42

A -



There are various branch optimizations which can be performed. These

include changin6:

Bc 11--Conditionl branch to
11

B 12--Unconuitioal branch to
12

11:

to:

Bnotc 12 --Conditional branch to

12

-with complemented

condition.

Other branch optimizations include using short branch instructions where

possible. This optimization shall be performed at the end of POST, since

other optimizations may reduce the size of the program and may, therefore,

affect the number of branches for which the short form may be used.

Having modified the code for a procedure or portion thereof, POST writes out

the modified code file.

3.3.12.3 Outputs

Code file (modified) - to be read by the assembler.

Vol 5

3-43

f4



...13 Assembler - ASH

The assembler phase of the Compiler reads the code file produced by the post

code generation optimizer (POST) and generates a relocatable object module.

In addition, the assembler is responsible for producing the assembly

listing. It should be noted that although this phase is called the

"assembler", it does not read assembly language source, but rather the

internal form of machine instructions from the code file. ASH's function

corresponds to that of the second pass of a two-pass assembler. ASH's

design shall accomodate its use as the basis of such a second pass, should
an assembler be required for some target.

.j.13.1 Inputs

Code file - file written by POST (See 3.3.12.3)

Symbol table -(resident)- produced or modified by previous

Compiler phases (See Appendix A).

Name table - file written by front end (See Appendix Z).

Compiler options - in compilation control record (See 3.3.1.3)

3.3.1b.2 Processing

The primary responsibility of the assembler (ASH) is to generate the

relocatable object from the code file, and to produce a pseudo-assembly

listing if one is requested. In addition, the resolution of addresses is

performed by ASH.

The resolution of addresses must be performed by the assembler before the

code file is processed. ASM walks the symbol table anu changes those

addresses that are relative to some Compiler internal location counter

(e.g., the start of constants) to be relative to the start of a linker

control section (CSECT).

The name table must be read back into core so that the symbolic

representation of names is available for use in producing the assembly

listing and, in a later phase, the cross-reference and attribute listing.

The generation of the relocatable object module from the code file is

relatively straightforward. It consists principally of formatting the

Vol 5
3-44



instructions based on the information contained in the code file and the

symbol table. Since the instructions being formatted are target machine

instructions, the assembler is necessarily target-dependent. Much of the

logic of this phase, however, is applicable to a variety of targets.

The main loop logic, that is, the reading of the code file and switching on

the type of code file entry can be retained despite retargettin&. While

some fields in the code file are machine-dependent, there is enough

commonality between machine architectures so that the basic form of the code

file is relatively constant.

Much of the effort required to retarget the assembler can be confined to the

data declarations. For example, although op code fields on different

targets may be of different sizes and be located at different positions, the

judicious use of field names, enuneration types, and table lookups can

minimize the changes necessary for retargetting.

Similarly, if a careful distinction ismade between instruction units,

addressable units, and word size, retargetting is made easier.

A secondary function of the assembler is to generate the (pseudo-) assembly

listing. This listing is described in Appendix C. The assembly listing

provides a human-readable representation of the Compiler's principal

output. The listing itself shall be in a standard format to minimize

retargetting costs.

The generation of assembly source is not proposed in the design. If it

becomes necessary for some reason to generate assembly source, the assembler

phase would be the logical place to do it. Note that the pseudo-assembler

source portion of the assembly listing is not actually able to be input to

an assembler due to the fact that names appearing in different scopes would

be multiply defined.

3.3.13.3 Ouputs

Relocatable objects

Pseudo-assembly listing

Vol 5
3-45



3. .14 Cross-reference Generator - XRF

The cross-reference listing generator produces the cross-reference and

attribute listing and generates the debugging tables for the object module.

s.3.14.2 Inputs

Cross-reference file - (See 3.3.4.3)

Symbol table - resident - (See Appendix A)

Name table - resident - (See Appendix A)

Compiler options

3. .14.2 Processing

The processing performed by XREF is relatively straightforward. The

cross-reference file is read into core ana an in-core sort is performea.
The sorting method used will be Hoare's Quicksort. In order to guard

against worst-case behavior, the median of three elements shall be useo to

choose partitioning elements.

The sort key(s) used depend(s) on which listing option is selected. For the

straight alphanumeric listing, the major key is the name and the minor key

is the line number of the reference. For the structured listing, the major

key is the outermost structure, wth inner structures as minor keys.

Alternatively, the sort could be thought of as using fully qualified names,

sorted component by component.

After the sorts have been performed, the listing is printed, Set/use

information is obtained from the sorted cross-reference tokens. Attribute

information is obtained from the symbol table.

In parallel with the listing generation, XREF writes set/use information for

package data and external routines to the object file, so that the file can

be used later by the linker to generate a system cross-reference.

The other major responsibility of XREF is to generate the debugging tables,

which are then written to the object module. This is primarily an exercise

in formatting the symbol table in such a way that it is useful to the

debugger.

Vol 5
3-46

ANAW



3.3.1 4.3 Outputs

Cross-reference listing - to listing file - (see Appendix C)

Attribute listing - to listing file - (See Appendix C)

Concordance information - to object file

Debug tables - to object file

3.3.14.4 Special Considerations

XREF requires sufficient table space to perform a memory-resident sort of

all of the cross-reference tokens generated by the compilation of a

particular compilation unit. If insufficient space is available, the

cross-reference listing shall be partitioned.

3.3.15 Library Unit Specification Update - LIBO

LIBO runs after the semantic analysis phase and produces the Library unit

specification of the program being compiled.

3.3.15.1 Inputs

The inputs to LIBO are the resident symbol table and optionally the generic

declaration file.

3.3.I5.2 Processing

LIBO formats generic skeletons and inline subprogram bodies for inclusion

into the Program Library. The current compilation-unit name with a

date/time stamp will be added to all withed Library units. If this

compilation declared any separate subunits, the symbol table is copied into

the Program Library -- the part that is required for subunit compilation --

and creates a null body stub entry in the Program Library. If this null

entry is not replaced before linking, the Linker will substitute a canned

procedure body for the reference.

LIBO will check if this compilation-unit's spec already exists in the

Library and if the visible interfaces differ. If so, LIBO produces a list

of probable obsolete compilations.

Vol 5
3-47

mL __ -- -Ar 1



This compilation-unit's spec is added to the Library and relocatable

object. The previous version unit spec will be deleted from the Library.

Finally, LIBO produces the ADTs.

3.3.15.3 Outputs

The output of LI1O is the Librery unit specification of the program being

compiled, the ADTs and the list of possible recompilation needs.

..
4 ADAPTATION

This section describes the requirements of the Compiler with respect to

system environment, system parameters, and system capacities.

3.4.1 General Environment

Not Applicable.

3.4.2 System Parameters

Not applicable.

3.4.3 System Capacities

The size of the memory partition allocated to the ,ompiler will affect its

performance - the Compiler will be organized to page unit data into limiteu

space, and to take advantage of dynamic memory allocation, when available.

3.5 CAPACITY

Not applicable.

Vol 5

3-48

.



SECTION 4 - QUALITY ASSURANCE PROVISIONS

4.1 INTRODUCTION

This section contains the requirements for verification of the performance

of the Compiler. The test levels, verification methods, and test

requirements for the detailed functional requirements in Section 3 are

specified in this section. The verification requirements specified herein

shall be the basis for the preparation and validation of detailed test plans

and procedures for the Compiler. Testing shall be performed at the

subprogram, program (CPCI), system nitegration, and acceptance test levels.

The performance of all tests, and the generation of all reports describing

test results, shall be in accordance with the Government approved CPDP and

the Computer Program Test Procedures.

The verification methods that shall be used in subprogram and program

testing include the methods described below:

1. Inspection - Inspection is the verification method requiring visual

examination of printed materials such as source code listings, normal

program printouts, and special printouts not requiring modification of

the CPCI. This might include inspection of program listings to verify

proper program logic flow.

2. Analysis - Analysis is the verification of a performance or design

requirement by examination of the constituent elements of a CPCI. For

example, a parsing algorithm might be verified by analysis.

3. Demonstration - Performance or design requirements may be verified

by visual observation of the system while the CPCI is executing. This

includes direct observance of all display, keyboard, and other

peripheral devices required for the CPCI.

4. Review of Test Data - Performance or design requirements may be

verified by examining the data output when selected input data are

processed. For example, a review of hard copy test data might be used

to verify that the values of specific parameters are correctly computed.

Vol 5

4-1



5. Special Tests - Special tests are verification methods other than

those defined above and may include testing one functional capability of

the CPCI by observing the correct operation of other capabilities.

These verification methods shall be used at various levels of the testing

process. The levels of testing to be performed are described in the

paragraphs below. Data obtained from previous testing will be acceptable in

lieu of testing at any level when certified by CSC/SEA and found adequate by

the RADC representative. Any test performed by CSC/SEA may be observed by

RADC representatives whenever deemed necessary by RADC.

Table 4-1 specifies the verification method for each functional requirement
given in Section 3 of this specification. The listing in Table 4-1 of a

Section 3 paragraph defining a functional requirement implies the listing of

any and all subparagraphs. The verification methods required for the

subparagraphs are included in the verification methods specified for the

functional requirement. Acceptance test requirements are discussed in

Paragraph 4.3.

4.1.1 Subprogram Testing

Following unit testing, individual modules of the Compiler shall be

integrated into the evolving CPCI and tested to determine whether software

interfaces are operating as specified. This integration testing shall be

performed by the development staff in coordination with the test group. The

development staff shall ensure that the system is integrated in accordance

with the design, and the test personnel shall be responsible for the

creation and conduct of integration tests.

4.1.2. Program (CPCI) Testing

This test is a validation of the entire CPCI against the requirements as

specified in this specification.

Vol 5
4-2 .)j



CPCI testing shall be performed on all development software of the

Compiler. This specification presents the performance criteria which the

developed CPCI must satisfy. The correct performance of the Compiler will

be verified by testing its major functions. Successful completion of the

program testing that the majority of programming errors have been eliminated

and that the program is ready for system integration. The method of

verification to be used in CPCI testing shall be review of test data. CPCI

testing shall be performed by the independent test team.

4.1.3. System Integration Testing

System integration testing involves verification of the integration of the

Compiler with other computer programs and with equipment. The integration

tests shall also verify the correctness of man/machine interfaces, and

demonstrate functional completeness and satisfaction of performance

requirements.

System integration testing shall begin in accordance with the incremental

development procedures as stated in the CPDP. Final system integration

shall occur subsequent to the completion of all the CPCIs comprising the

MAPSE system. Two major system integration tests shall be performed: one

for the IBM VM/370 implementation and one for the Interdata 8/32

implementation. The method of verification used for system integration

testing shall be the review of test data.

The test team shall be responsible for planning, performing, analyzing

mnitoring, and reporting the system integration testing.

4.2 TEST REQUIREMENTS

Quality assurance tests shall be conducted to verify that the Compiler

performs as required by Section 3 of this specification. Table 4-1

specifies the methods that shall be used to verify each requirement. The

last column refers to a brief description of the specified types of

verification as given below. Test plans and procedures shall be prepared to

provide details regarding the methods and processes to be used to verify

that the developed CPCI performs as required by this specification. These

test plans and procedures shall contain test formulas, algorithms,

techniques, and acceptable tolerance limits, as applicable.

Vol 5
4-3

9 -



SECTION TITLE INSP. SPEC. DEMO. DATA. PARA. NO.

3.3.1 Compiler Exec X I 4 4.2.3

3.3.2 Lexical Analysis I X 1 1 4.2.3

3.3.3 Library Specification 1 1 X 1 1 X 14.2.2,4.2.3 I

Input 11 I I

3.3.4 Res. & Sem. Analysis X 1 X 14.2.1,4.2.2 1

3.3.5 Allocator X 1 1 X 14.2.2,4.2.3 1

3.3.6 Checks 1 X 1 X 14.2.2,4.2.3 1

3.3.7 Target Optimizer X 1 X 14.2.2,4.2.3 :

3.3.8 Flow Analyzer X 1 1 X 14.2.2,4.2.3 1

3.3.9 Optimizer 1 X I 1 X 14.2.2,4.2.3 1

3.3.10 Loop Processor I X : 1 X 14.2.2,4.2.3 1

3.3.11 Code Generator x I x I : 14.2.1,4.2.3 1

3.3.12 Post Code Generation X I 5 14.2.2,4.2.3 1

Optimizer I I I I S I

3.3.13 Assembler I X X 1 14.2.1,4.2.3 1

3.3.14 Cross Reference Gen. 1 1 X 1 1 X 14.2.2,4.2.3

3.3.15 Lib.Unit Spec Update 14.2.2,4.2.3 1

Table 4-1 Test Requirements Matrix

4.2.1 Inspection

Output listings shall be inspected to ensure that they match relevant

documentation.

4.2.2 Review of test data

Drivers shall be written to generate input data and to log output data.

Test input scripts and expected test output shall be developed in accordance

with specifications. Testing shall consist of comparing expected output

data with test output data.

4.2.3 Special Tests

Each function is tested as a part of the compilation process.

Vol 5

4-4



41.3. ACCEPTANCE TESTING

The Compiler shall be submitted for acceptance testing by the Government

using the Ada Compiler Validation Facility. Satisfactory performance of the

Compiler in this testing shall result in the final delivery and acceptance

of the Compiler.

I

Vol 5
4-5



SECTION 5 - DOCUMENTATION

5.1 General

The documents that shall be produced during the implementation phase in

association with the Ada compiler development are:

1. Computer Program Development Specification

2. Computer Program Product Specification

3. Computer Program Listings

4. Maintenance Manual

5. Users Manual

6. Retargetability/Rehostability manual

7. Language Reference Handbook

5.1.1 Computer Program Development Specification

The final Ada Compiler B5 Specification shall be prepared in accordance with

DI-E-30139 and submitted 30 days after the start of Phase II. A single

document shall be prepared for the compiler that defines the functional

capabilities and interfaces. Any dependencies on the host and target shall

be addressed in the document. Additionally, characteristics of potential

hosts and targets that have had impact on the B5 specification shall be

presented.

5.1.2 Computer Program Product Specification

A type C5 specification shall be prepared during the course of Phase II in

accordance with DI-£-30140. This document shall be used to specify the

compiler design and development approach for implementing the B5

specification. This document shall provide the detailed description that

shall be used as the baseline for any Engineering Change Proposals. A

single C5 shall be produced for the compiler with different sections

addressing the dependencies of the two host computers.

Vol 5



5.1.3 Computer Program Listings

Listings shall be delivered that are the result of the final compilation of

the accepted compiler. Each compilation unit listing shall contain the

corresponding source, cross-reference and compilation summary. The source

listing shall contain the source lines from any INCLUDEd source objects.

5.1.4 Maintenance Manual

A Compiler Maintenance Manual shall be prepared in accordance with

DI-M-30422 to supplement the C5 and compilation listings sufficiently to

permit the compiler to be easily maintained by personnel other than the

developers. The documentation shall be structured to relate quickly to

program source. The procedures required for debugging and correcting the

compiler shall be described and illustrated. Sample run streams for

compiling compiler components, for relinking the compiler in parts or as a

whole, and for installing new releases shall be supplied. The data base

shall be fully documented with pictures of record layouts where appropriate

and data algorithms explained.

The Maintenance Manual shall be organized with a standard outline and

separate parallel volumes shall be delivered that address the tailoring of

the compiler to a particular target or host computer. Debugging aids that

have been incorporated as an integral part of the compiler shall be

described and their use fully illustrated. Special attention shall be given

to the description of the maintenance mode operation of the compiler used to

aid in the pinpointing of compiler problems.

5.1.5 Users Manual

A Users Manual shall be prepared in accordance with DI-M-30421 and shall

contain all information necessary for -he operation of the compiler.

Because of the virtual user interface presented by the ACLI, a single manual

is sufficient for all host computers. Separate appendices shall describe

such machine dependent data as the target machine parameters, procedure

calling and reFfster conventions, representation attributes, packages

STANDARD and SYSTEM, low-level I/0, machine code insertions and the

INTERFACE pragmas. Sample compiler listings shall be Included in the manual.

Vol 5 i
5-2



A complete list of all compiler diagnostic messages shall be Included with

supplemental information chosen to assist the programmer in locating and

correcting source program errors.

5.1.6 Retargetability/Rehostability Manual

In accordance with R&D-137-RADC and R&D-138-RADC, a manual shall be prepared

that describes step by step the procedures for retargeting the Ada Compiler

to a different computer, integrating this new "back-end" into the compiler

system, and transporting the compiler onto different host computers. Tips

shall be provided that will guide the developer module by module as to what

may be used unchanged entirely or in part. In particular, the adaptation of

the machine dependent optimizer shall be carefully presented to permit

maximum benefit to be derived from the remaining machine-independent

optimization phases.

5.1.7 Language Reference Handbook

An Ada Language Reference Handbook shall be prepared that shall contain

syntax diagrams for all language constructs and a cross-reference listing of

all constructs. Other handy Information such as number conversion and ASCII

encoding tables, host and target parameters, and a compiler option summary

shall be included.

Vol 5

5-3

4



APPENDIX A - SYMBOL TABLE

This appendix describes the symbol table and the three closely related

tables: the hash table, the homonym table and the name table. The symbol

table contains attribute information for objects defined in Ada programs, as

well as for compiler-defined objects. The other three tables provide a

means of associating the attributes of an object with its source name.

The symbol table described here is patterned after the symbol table portion

of TCOL. It has been updated to reflect the language changes between

preliminary and revised Ada, and to allow the symbol table to serve all

phases of the compiler. (TCOLAda as documented, is an interface between

the front and back-ends of the compiler, and does not, therefore, include

fields that may be needed by one but not the other.)

The symbol table shall be resident for the entire compilation. The name,

homonym and hash tables shall ';,z; be resident for a portion of the

compilation. The hash and hcmony! ,aoles are only needed in order to map

from a character string (na"' t symbol table entry. These tables need

be resident only until the l'it ickage specification has been read. In

particular, they shall 'et o* resident during the optimization, code

generation, and editor phases.

The name table is requ'ired both for mapping from source names to symbol

table entries and for producing listings. Thus, although the name table is

not resident during optimization and code generation, it must be written out

so that it can be used during the generation of diagnostics and the

cross-reference, attribute and assembly listings.

The hash table provides a mapping from a hash value (obtained by applying a

hash function to a name string) to the name pointer array. The hash table

also contains lists of pointers to names that hashed to the same value.

(Chaining is used to resolve collisions).

The name table is divided into two parts: the name pointer array and the

name table proper. The name pointer array contains pointers both to the

names themselves, and to a list of homonyms (symbol table entries associated

Vol 5
A-i



The structure of these tables is depicted below:

NAME POINTER ARRAY NAME TABLE

POINTER 

ARRAY

SYMBOL TABLE

TF N. 031-30MA

Figure A-1. Name Table Structure (In LEX)

Vol29iA

-A A-f2



The following picture Illustrates the symbol table and name table structure

as seen in the assembler phase:

FOR CW LEN APPENDIX A

HASHTABL NAM POITER RRAYNAMIE TABLE

TO NAME
POINTER ARRAY

TP ft. 031.MA

Figure A-2. Name Table Structure (In ASM)

Vol 5
A-3



with the same name). The name pointer array exists for two reasons. First,

it allows name numbers to be stored in the symbol table. If the name table

is written out in order, a new name pointer array can be constructed when

the name table is read back in, and the name associated with a given symbol

table entry can be found. Second, since the homonym table is only needed in

the front end, the homonym list pointers in the name pointer array do not

have to be rebuilt when the names are read back in.

The name table contains, for each unique name, a list of symbol table

entries that define objects (or procedures, etc.) which Possess that name.

This table is used during name resolution and is not needed by the compiler

back-end.

Following is a description of the hash table, the name table, the homonym
table and the symbol table. A certain amount of license has been taken with

the descriptions. These liberties include:

" Incomplete type definitions are omitted.

" Declarations are grouped according to table, rather than in the
order required for elaboration.

" Constraints on the arrays are omitted rather than chosen

arbitrarily.

Hash Table

type HASHINDEX is new INTEGER; --bounds for hash table

type HASH TABLE is

record

NAMENO: arrayCHASHINDEX) of N1AME-INDEX; -- points into name

pointer

LINK: array(HASH INDEX) of HASH INDEX; -- link for

collisions

end record;

HASH: HASH-TABLE; -- hash table object

Vol 5
A-4



Name table - names are allocated on the heap

type NAME is new STRING;

type NAMEPTR is access NAME; -- name pointers

Name pointer array (for front end)

type NAME INDEX is new INTEGER; --bounds for name

--pointer array

type NAME POINTER is

record

NAMEREF: NAMEPTR; -- pointer to name

HOMONYMHEAD: HOMONYMREF; - pointer to homonym

list head

end record;

NP: array(NAMEINDEX) of NAMEPOINTER; --name pointer array

Homonym table

Links symbol table entries that have the same name

type HOMONYM is

record

DEFN: SYMREF; --points to symbol

--table

NEXT: HOMONYMREF; --points to next

--homonym

end record;

type HOMONYMREF is access HOMONYM;

Enumeration types for symbol table

type SYMCLASSENUM is (BLOCKSYM, CASESYM, CHOICESYM,

ENTRYSYM, ENUMERALSYM, EXCEPTIONSYM,

GENERICINSTSYM, GENERICSYM, LABELSYM,

LITERAL SYM, PACKAGESYM, PRAGMA SYM, RANGESYM,

SELECTALTERNATIVESYM, SELECTSYM, SUBPROGRAMSYM,

SUBTYPE SYM, TASKSYM, TASK-TYPESYM, TYPE SYM,

VARBLSYM, VARIANTCASE SYM, VARIANT SYM);

Vol 5
A-5



type ALTERNATIVE ENUM is (DELAY, TERMINATE. ACCEPT);

type CONSTANCYENUM is (NOTCONSTANT, UNKNOWN, COMPILETIME,

LINKTIME, EXECUTION-TIME);

type CHOICEKIND ENUM is (RANGE, INDIVIDUAL, OTHERS);

type LINKAGEENUM is (ADA, SYSTEM,others);

type LITKINDENUM is (INTLIT, ENUMLIT, FLOATLIT, FIXEDLIT,

STRINGLIT, EXPRLIT);

type NUMERICREPENUM is (FIXEDNUMERIC, FLOATNUMERIC,

INTEGERNUMERIC, DISCRETE,

GENERICINTEGER, GENERICFIXED,

GENERICFLOAT);

type PEDIGREE ENUM is (DECLARED, DERIVED, REDEFINED);

type REPENUM is (ACCESSREP, ARRAYREP, ENUMERATIONREP,

NUMERICREP, RECORDREP);

type SELECTENUM is (ACCEPT, CONDENTRY, TIMEDENTRY);

type SPECIESENUM is (VARBL, INPARM, OUTPARM, INOUTPARM,

RECORDCOMPONENT);

type SUBDEFAULTENUM is (NONE, ATINSTANTIATION, DECLARED);

type SUB KIND ENUM is (PROCEDURE, FUNCTION);

Other types

type REL ENUM is (ABS,REL,EXT);

type LOCATION is INTEGER;

type LOCATIONSPECIFIER is

record

RELOCATION:RELENUM;

CSECT:INTEGER;

SECTIONOFFSET:INTEGER;

end re, ord;

References (access types);

(incomplete declarations are omitted

full definitions follow symbol table

Vol 5
A- 6



Symbol table proper

type SYM(CLASS : SYMCLASSENUM) is -- Symbol table

record

case CLASS is

when ENTRYSYM 1 EXCEPTION SYM 1 GENERICINSTSYM

LABEL SYM 1 PACKAGE SYM 1 PRAGMA SYM

SUBPROGRAM SYM SUBTYPE SYM 1 TASK SYM

TASK TYPESYM 1 TYPESYM VARBLSYM =>

NAME NAMEREF;

case CLASS is

when ENTRY SYM =>

ENTRYFORMALS : VARBLSYMSEQ; -- formal

--parms for entry

ACCEPTS : access ACCEPTLIST; --list of

--accepts

ENTRYRANGE RANGE CONSTRAINTREF;

--range for entry

--family

ENTRYLOCATION : LOCATION;

-- from for use at

ENTRYNUMBER : INTEGER;

-- ordinal number of

when EXCEPTIONSYM =>

null;

when GENERIC INST SYM >

INSTANCEOF : GENERIC SYM REF;

-- what was

-- Instantiated

GENERICACTUALS : GENERICACTUALSEQ;

-- actual parameters

Vol 5

A-7



when LABEL SYM =>

LABELLOC : LOCATIONSPECIFIER;

--defn of label

FORWARDTARGET : BOOLEAN;

- if target of fwd br

FORGET : BOOLEAN;

-- don't remember regi

REFERENCE COUNT : INTEGER;

-- label references

when PACKAGE SYM :>

IS BUILTIN : BOOLEAN;

-- for built-ins

IS SEPARATE : BOOLEAN;

MODULE LOCATION : LOCATION;

--from for use at

BODY : BLOCK _SYMREF;
- body entry in symbol

SPEC -- to be defined

when TASKTYPESYM =>

IS SEPARATE : BOOLEAN;

MODULELOCATION : LOCATION;

--from for use at

BODY : BLOCKSYMREF;

-- body entry in symbol

ACTIVATIONLENGTH : VARBL SYMREF;

-- temp for alength

MAX ACCEPT NESTING : INTEGER;

-- rendezvous nesting

NUMBER OF ENTRIES : INTEGER;

-- counting families

ENTRIES : ENTRY SYMSEQ;
-- entries for this

Vol 5
A-8



"I
when SUBPROGRAM SYh =>

ISBUILTIN BOOLEAN;

for built-ins

IS SEPARATE : BOOLEAN;

MODULELOCATION LOCATION;

--from for use at

BODY : BLOCKSYMREF;

-- body entry in symbol

SPEC -- to be defined

SUBPROGRAMKIND : SUBKINDENUM;

-(PROCEDURE 1 FUNCTION)

SUBPROGRAMFORMALS : VARBL_SYM_SEQ;

-- formal parameters

LINKAGE : LINKAGE ENUM;

-- (ADA 1 SYSTEM)

MACHINECODEIN PROC : BOOLEAN;

-- machine insertions

GLOBALNAMESLIST : GNLREF;

-- for use by optimizer

RESULTSUBTYPE : VARBL SYM REF;

type of value return

REDUCIBLE : BOOLEAN;

-- can find calls comm

when PRAGMASYM =>

null;

when SUBTYPESYM =>

PARENT TYPE : TYPESYMREF;

PARENTSUBTYPE : SUBTYPESYhREF;

CONSTRAINTS : CONSTRAINT SEQ;

Vol 5
A-9 '

* - .-- ---- -- r.--



when TASKSYM =>

TYPEOF TASK : TASKTYPEREF;

-- always present

IS TASK ACCESS : BOOLEAN;

-- for access types

TASKLOCATION : LOCATIONSPECIFIER;

-- TCB location

-- type has code loc

when TYPE SYM =>

PEDIGREE : PEDIGREEENUM;

(DECL 1 DERIVED)

DERIVED FROM : SUBTYPE SYM REF;

-- parent

REPRESENTATION : REPREF;

-- representation

ISPRIVATE : BOOLEAN;
-- private type

IS LIMITED : BOOLEAN;

-- only if private

IS PACKED : BOOLEAN;
-- pragma pack

ISCONTROLLED : BOOLEAN;

-- pragma controlled

LENGTH : INTEGER;

-- size (target dependent)

HASREF : BOOLEAN;

when VARBLSYM =>

VARBLSUBTYPE : SUBTYPESYMREF;
-- never points to TYPE

CONSTANCY : CONSTANCYENUM;

-- when value is constant

SPECIES : SPECIES ENUM;

Vol 5
A- 10



INITIALIZE : LITERAL SYMREF;

-- initial value, if

IS INITIALIZED : BOOLEAN;

-- even if value is

IS PRIVATE VAR : BOOLEAN;

POSITION - to be defined

-- for user allocated

VARBLLOCN : LOCATIONSPECIFIER;

REV COUNT : INTEGER;

-- reference count

FOLDINGVALUE : INTEGER;

-- value 0 for folding

IS FROMPACKAGE : BOOLEAN;

-- so loc spec won't

SCOPE . SUBPROGRAM_SYMREF;

-- defining scope

SIBLING : SYMREF;

-- sibling

PARENT : SYMREF;

-- parent structure

end case;

when BLOCKSY4 =>

DECLARATIONS : LABELSYMREF;

- label for decl par

CODE . LABEL_SYMREF;

-- label for start of

EXCEPTIONS : EXCEPTIONSEQ;

-- exceptions handled

EXCEPTIONLOCATION : LABELSYMREF;

- label for 1st hand

Vol 5
A-11

*1



when CASE SYM =>

EXPRESSIONTYPE : SUBTYPE SYMREF;

- type of selector

CASECHOICES : CASECHOICESEQ;

-- choices specified

when CHOICESYM =>

CHOICEKIND : CHOICE-KINDENUM;

- (RANGE 1 INDIV )
CHOICERANGE : RANGESYMREF;

-- for discrete range

CHOICEVALUE : LITERAL SYM REF;

-- for single choice

when ENUMERAL SYM =>

ENUMERALNAME : LITERALSYMREF;

-- name of enumeral

ENUMERAL VALUE : INTEGER;

-- representation

when GENERICPARM SYM =>

PARM : SYMREF;

-- ref for actual parm

SUBPROGRAM DEFAULT : SUBPROGRAM_SYMREF;

-- default, if any

SUBPROGRAMDEFAULT-KIND : SUBDEFAULTENUM;

-- (NONE I INST )

when GENERIC SYM =>

GENERICFORMALS : GENERIC PARMSYMSEQ;

- formal parma

PATTERN -- to be defined

- so body can be ret

Vol 5
A- 12



when LITERALSYM 0>

LITSUBTYPE :SUBTYPE-SYMREF;
-- literal type

LITKIND :LITKINDENUM;

-(INT 1 FLOAT, etc)

LITNAME :STRING;

-- printable

LIT-VALUE :VECTOR;
-canonical form

when SELECT ALTERNATIVESYM =>

ALTERNATIVEKIND :ALTERNATIVEENU4;

--(DELAYITERMIACCEPT)

ALTERNATIVE-LABEL :LABEL SYM REF;

-where to execute

HASWHENCLAUSE :BOOLEAN;

-- optimize if uncond

ACCEPTENTRY :ENTRYSYMREF;
-entry being accept

when SELECT -SYM =>

SELECTKIND :SELECT-ENUM;

-- (ACCEPT 1 COND)

NUMBEROFCHOICES :INTEGER;

SELECTALTERNATIVES :SELECT ALTERNATIVESEQ:

-alternatives

HASDELAY :BOOLEAN;

-if delay(s) present

HASTERMINATE :BOOLEAN;

-- if terminate alter

HAS-ACCEPT :BOOLEAN;
-if accept alternate

Vol 5 
-

A- 13

L-. 
*...A!



when VARIANT CASE SYM >

DEPENDSON : VARIABLSYMREF;

--discriminant

VARIANTS : VARIANTSYMSEQ;

-- when's

when VARIANTSYM =>

VARIANTCONDITIONS : CHOICESYMREF;

-- conditions

DEFINITION : VARIABLESYMREF;

-- variant definition

end case;

end record;

References (access types) for SYM's are

type CHOICE SYM REF is access SYM(CHOICESYM);

type BLOCK SYM REF is access SYM(BLOCKSYM);

type ENTRY SYM REF is access SYM(ENTRYSYM);

type GENERIC SYMREF is access SYM(GENERICSYM);

type GNLREF is access FLOWLISTPTR;

type LABELSYMREF is access SYM(LABEL SYM);

type LITERAL SYM REF is access SYM(LITERAL SYM);

type NAMEREF is access STRING ;

type RANGE SYM REF is access SYM(RANGE SYM);

type SUBPROGRAMSYMREF is access SYM(SUBPROGRAMSYM);

type SUBTYPE SYM REF is access SYM(SUBTYPESYM);

type SYMREF is access SYM;

type TASKTYPE REF is access SYM(TASKTYPESYM);

type TYPESYMREF is access SYM(TYPE-SYM);

type VARBL SYM REF is access SYM(VARBL SYM);

Vol 5

A-14



Sequences
No representation is given. The SEQ's are sequences of access variables

that could be implemented as an array of access variables or as a linked
list. The particular implementation shall be decided on as part of the

second phase. The names used here indicate the type of objects that would
be pointed to by the access variables. Name SEQ represents a sequence of
type "name". For example, VARBLSYMSEQ denotes a sequence of VARBL SYM's.

type CASE CHOICESEQ is

type CHOICESYM SEQ is

type ENTRY_SYM SEQ is

type ENUMERALSYM SEQ is

type EXCEPTION SEQ is

type GENERIC ACTUAL SEQ is

type GENERICPARMSYMSEQ is

type SELECTALTERNATIVESEQ is

type SUBTYPESYMSEQ is

type VARIANTSYMSEQ is

type VARBLSYMSEQ is

type REP (REP KIND: REPENUM) is

record

case REPKIND is

when ACCESS REP =>

ACCESSOF : SUBTYPESYMREF; -- subtype pointed to

IS CONTROLLED : BOOLEAN; -- pragma controlled

when ARRAYREP :>

COMPONENT : SUBTYPESYMREF; -- array of

INDICES : SUBTYPESYMSEQ; - bounds are constr

MUST CONSTRAIN : BOOLEAN; -- whether must constr

when ENUMERATIONREP =>

ENUMERATIONLITERALS : ENUMERAL.SYMSEQ;

when NUMERICREP z> -- (could be moved to

NUMERICREP KIND : NUMERICREP ENUM; -- (INT I FLOAT, etc.)

Vol 5

A-15

- 15



when RECORD REP =>

FIELDS : SYNREF; -- (VARIANT or VARBL)

DISCRIMINANTS : VARBLSYMSEQ; - discriminants

ALIGNMENT : INTEGER; -- aligned on 0 mod r

end case;

end record;

References (access variables) for REP's

type REP REF is access REP;

Constraints

type CONSTRAINT (CONSTRAINTKIND CONSTRAINT ENUM) is

record

case CONSTRAINTKIND is

when DISCRIMINANTCONSTRAINT =>

DISCRIMINANT : VARBLSYMREF; -- discriminant

DISCRIMINANTISSTATIC : BOOLEAN; c compile-time constra

DISCRIMINANTVALUE : SYMREF; -- (LITERAL or VARBL)

when FIXED ACCURACYCONSTRAINT =>

DELTAVALUE : LITERALSYMREF; -- error bound

when FLOAT ACCURACY CONSTRAINT =>

DIGITSVALUE : INTEGER; -- digits of precision

when INDEX CONSTRAINT >

INDEXTYPE : SUBTYPESYMREF; -- type of index

INDEX RANGE : RANGE-CONSTRAINT REF; - bounds

Vol 5
A-16

_7q



when RANGECONSTRAINT =>

LOWER IS STATIC : BOOLEAN ; -- compile-time cons

LOWERVALUE : SYM REF; - LITERAL or VARBL

UPPER IS STATIC : BOOLEAN; -- compile-time cons

UPPERVALUE : SYM REF; - LITERAL or VARBL

end case;

end record;

References (access variables) for CONSTRAINT's

type RANGE CONSTRAINT REF is access CONSTRAINT(RANGE CONSTRAINT);

The following five figures illustrate the symbol table structure for Types,

Records, Procedures, Tasks and Enumeration types.

Vol 5
A-17



SYMBOL TABLE - TYPE STRUCTURE

IiwIUSR AIM 0 itU;

VAW-@.UTWI inpOmNWAn"

Figure A-3. Symbol Table -Type Structure

Vol 5
A- 18



SYMBOL TABLE - RECORD
(WITH VARIANTS)

TYPE REC (0D INTEGER RANGE 0.. 31 IS
RECORD
A INTEGER.
CASE D IS
WHEN 0=)X.Y:INTEGER.
WHENI.. 3::)Z:INTEGER.
END CASE.
END RECORD,

R:REC

VAROL...YM -amYE..j~ TY.V-

a VARBL-

VAAAAA.Oa.OmoW

VVaAk.AY VRULSY

c~~m...~~0091101-IMS .mwa PI..AU

Figre AN yblTbe-RcrdSrcue(ains

vo 5ATCIIJT AIN-MU
VA- 1

VARMAM-CODITO
SaIIT OfFINIT"

S...NOC -1TN



SYMBOL TABLE - PROCEDURE

PRtOCEDURE P IN.J:INTECERI 1S
K.L.INTE(ER;

BEGIN

END P;

VARBL..SYM-SEG

SUPOGA~SMSUSPROGRANI-FORNIAI PARM PARM

LOCSL.. LAL..SYM LAULRSM XCESO4..5

Figure A-5. Symbol Table - Procedure Structure

Vol 5
A- 20

.7'-



SYMBOL TABLE - TASK
TAMA TMI TT a

RIMHY Al IIAGER).

T~wI TTA 6 ACS TY

I TTA

Figre -. SmolK- Tbe-astucture

JCM ol 5 mw" r "i

NMA-2

awm2/)6
wov A

~



SYMBOL TABLE - ENUMERATION TYPNE

TYPE aIf WED. W. 'n;
SUBTYPEIS E MANGE'A.. .2r;

FiUeYP-g.ymbo Table- EnmeainTpStuur

A-2P2



APPENDIX B - INTERMEDIATE LANGUAGE (IL)

The IL file is an internal representation of the source program. The IL is

first produced by RESANL, it is used and modified by the optimizer and is

finally input to the code generator phase, COGEN.

An outline of the IL operators is first shown below followed by an Ada

description of the IL record structure.

IL OP Description Number & type

of operands

START PACKAGE 1 (PACKAGE)

END PACKAGE 1 (PACKAGE)

STARTPROC START PROCEDURE 1 (PROC)

END PROC END PROCEDURE I (PROC)

STARTTASK START TASK 1 (TASK"

END TASK END TASK 1 (TASK)

START BLOCK START BLOCK 1 (BLOCK)

ENDBLOCK END BLOCK 1 (BLOCK)

STARTPROLOG START PROLOG 1 TASK PROC OR BLOCK

END PROLOG END PROLOGUE 1 TASK PROC OR BLOCK

STARTEPILOG START EPILOGUE 1 TASK PROC OR BLOCK

END EPILOG END EPILOGUE 1 TASK PROC OR BLOCK

PLIST PARAMETER LIST 0 PARAMETER LIST DELIMITER

END PLIST END PARAMETER LIST 0 PARAMETER LIST DELIMITER

PARM PARAMETER 2 PARAMETER SPECIFIER

The parameter list shall be specified at the call and in

the prologue and epilogue. The parameters are:

At the call -

(ACTUAL-PARAMETER)

(FORMAL-PARAMETER)

IN PROLOGUE/EPILOGUE

(FORMAL-PARAMETER)

(PARAMETER-DUMMY)

Vol 5

B-1 .



Parameter lists shall be in declaration order.

START AGG START AGGREGATE 1 RECORD

END AGG END AGGREGATE 1 AGGROP

AGGREGATE OP 2 Value and component

RANGE CHECK CONSTRAINT CHECK 3 VALUE AND TWO CONSTRAINTS

This operator conditionally raises the constraint error

exception and is used for sinple constraints. This

operator is found common though it produces no result.

Local optimization shall done by the code generator.

RAISECONSTR RAISE CONSTRAINT ERROR NO OPERANDS

This operator is used for the more complex constraint

checks requiring formal IL with relationals and

conditional branching.

ADD ADD 2 NUMERIC

SUB SUBTRACT 2 NUMERIC

MUL MULTIPLY 2 NUMERIC

DIV DIVIDE 2 NUMERIC

EXP EXPONENTIATION 2 NUMERIC

SCALE BINARY SHIFT 2 NUMERIC

ABS ABSOLUTE VALUE 1 NUMERIC

MINUS UNARY MINUS 1 NUMERIC

REM REMAINDER 1 (INTEGER DIVIDE)

MOD MODULUS 2 NUMERIC INTEGER

Vol 5

B-2 7



CONVERT NUMERIC CONVERSION 1 NUMERIC

The conversion is Indicated by the type of the operand

and the resulting type of the convert operator.

AND BOOLEAN AND 2 BOOLEAN

OR BOOLEAN OR 2 BOOLEAN

XOR BOOL EXCULSIVE OR 2 BOOLEAN

NOT BOOLEAN COMPLEMENT 1 BOOLEAN

NEW ALLOCATOR 1 TYPE OR LITERAL AGGREGATE

EQUAL EQUALITY TEST 2 ANY TYPE

LESS LESS TEST 2 SCALARS

GREATER GREATER TEST 2 SCALARS

IN MEMBERSHIP TEST 2 (VALUE AND CONSTRAINT

SPECIFICATION)

Negation indicator in operator.

CONTROL TRANSFER

CJUMP CONDITIONAL JUMP 2 BOOLEAN AND LABEL

TRUE/FALSE indicator in operator

GOTO UNCONDITIONAL GO 1 LABEL

CALL PROC CALL 1 PROCEDURE

Used for procedure for function reference

EXIT LOOP EXIT 2 LABEL AND LOOP IDENTIFIER

PRIM PRIMITIVE OPERAND 1 SPECIFIES OPERAND

SUBSCRIPT SUBSCRIPT 2 or MORE PRIM AND SUBSCRIPT

Vol 5
B-3



(This shall have a variable number of operands with the

subscripts uncombined.

SLICE ARRAY SLICE 3 PRIM SUBSCRIPTed PRIM or

SLICE

AND LOWER/UPPER BOUNDS

DEBUGGING:

ON TURN FLAG ON 2 PHASE AND NUMBER

OFF TURN FLAG OFF 2 PHASE AND NUMBER

DUMP DUMP 3 PHASE, ADDRESS, NUMBER OF WORDS

LINE LINE NUMBER 0

PRESET REPL REPLACE 2 USED FOR GENERIC DATA INITIALIZATION

REPL REPLACE 2 SOURCE AND SINK

SCALAR

BLOCK

AGGREGATE

ACCESS

FUNCRES FUNCTION RESULT I

TASK TASK CREATION 1 TASK OPERAND

INFO UNSTRUCTURED INFORMATION

Type and number of words alwys can be ignored.

I/O calls shall be handled as normal calls on packaged

procedures.

Prologues. TASKS PROCS AND BLOCKS

The 'PROLOG' and 'END PROLOG' operators shall delimit the IL for the

prologues. Every TASK, PROC and BLOCK shall have a prologue - the

prologue may be empty. The code generated for a prologue shall be

specified both explicitly in the IL and implicitly as a function of the

symbol table information for the TASK, PROC or BLOCK.

Vol 5
B-4



The explicit IL for the prologue shall Include the following:

Parameter list specification (PROCs only)

Data allocation/elaboration

Initial value assignment

Task initiation

The parameter list specification could be ignored for some targets. The

default initial value assignments of input parameters shall be separate

from the other initial value assignments. Target dependent local

optimization should be done on the constant initial values.

EPILOGUES. TASKS PROCS BLOCKS

The 'EPILOG' and 'END EPILOG' operators shall delimit the IL for the

epilogue of each TASK, PROC and BLOCK. Every TASK, PROC and BLOCK shall

have an epilogue - it may be empty. The code generated for the epilogue

shall be controlled both explicitly in the IL and implicitly as a

function of the symbol table information.

The explicit IL for the epilogue will include the following:

Parameter list specification (output parameter PROCs only)

Tasking control

Function result (PROCS only)

Heap space management

Stack space management

Return mechanism (PROCS)

Output parameters shall be handles in a target dependent way.

LOOP Statements

All LOOP statements shall be delimited in the IL with a BEGINLOOP and

an END LOOP IL operator; these operators shall have as a single operand

the loop identifier.

An ENDLOOPLABEL operator shall follow the BEGINLOOP operator. The

ENDLOOPLABEL operator shall have on label operand - the label shall be

defined at the end of the loop.

Vol 5
B-5



An indefinite loop shall be expressed with a "GOTO loop identifier"

inserted before the END-LOOP.

The WHEN loop shall be expressed in the IL as an "IF ... THEN" statement

with a "GOTO loop-identifier" inserted before the END LOOP.

The FOR loop shall be expressed in the IL with the FOR and ENDFOR IL

operators or the FORLIST and ENDFORLIST operators.

BEGIN LOOP 1 LOOP IDENTIFIER

END LOOP 1 LOOP IDENTIFIER -- loop delimiter

END LOOPLABEL 1 LABEL -- defined after the END LOOP

FOR 4 (LOOP PARAMETER)

(INITIAL VALUE)

(INCREMENT)

(FINAL VALUE)

END FOR 0 -- FOR loop delimiter

FORLIST 2 (LOOP PARAMETER)

(ENUMERATION TYPE) -- enumeration list

END FOR LIST 0 -- FORLIST loop delimiter

Subscripting

A subscript shall be expressed in the IL with a SUBSCR operator. The

SUBSCR operator shall have a variable number of operands with a minimum

of two operands; the first operand is the PRIMitive being subscripted

and the second and following operands are the subscript expressions -

one operand for each dimension.

Constraint checking may be interspersed within the SUBSCR operands.

Array Slices

Array slices shall be specified with the SLICE operator. The SLICE

operator shall have three operands - the first operand shall be a

PRIMitive specifying an array (this array may be subscripted and may

itself be a slice); the second and third operands shall be the lower and

upper founds of the slice.

Vol 5
B-6



TASK Creation/Elaboration.

Task creation and elaboration - that may result from a Task declaration,

a task object declaration or a task access variable allocation - shall

be expressed in the IL with the TASK operator. The TASK operator shall

have a single TASK operand.

A description of the IL record structure is shown below.

Enumeration types for IL

type IL OPERATOR is

(STARTPACKAGE, ENDPACKAGE, START TASK, ENDTASK, STARTPROC,

ENDPROC. STARTBLOCK, ENDBLOCK, STARTPROLOG, ENDPROLOG,

STARTEPILOG, ENDEPILOG, STARTPLIST, ENDPLIST, PARM,

RANGE__CHECK, RAISE CONSTR, ADD, SUB, MUL, DIV, EXP, SCALE, ABS,

MINUS, REM, MOD, CONVERT, AND, OR, XOR, NOT, EQUAL, LESS, GREATER,

IN, NEW, CJUMP, GOTO, CALL, EXIT, PRIM, SUBSCRIPT, SLICE, LINE,

REPL, PRESETREPL, FUNCRES, STARTAGG, ENDAGG, AGGROP, VALU, NEW,

TASK, BEGIN__LOOP, ENDLOOP, ENDLOOPLABEL, BEGINFOR, ENDFOR,

BEGINFORLIST, ENDFORLIST, ON, OFF, DUMP, INFO, INTLIT, FLTLIT,

CHARLIT, BOOLIT, STRLIT).;

type IL BASETYPE is

(NULL, INTEGER,FIXEDFLOATING,BOOLEAN, CHARACTER,STRING,

STRUCTURE);

type IL SYMPTR is access SYM; - symbol table entry pointer

IL Entry

type IL (ILOPR:IL OPERATOR) is

record

case ILOPR is

when

ADD SUB I MUL I DIV 1 EXP 1 SCALE 1 ABS 1 MINUS 1

REM M MOD I CONVERT I AND 1 OR 1 XOR i NOT 1 EQUAL 1

LESS I GREATER 1 IN 1 PRIM i SUBSCRIPT 1 SLICE =>

ILTYPE: ILBASE-TYPE; - irimitive type - INTEGER,

-- floating etc

Vol 5
B-7

~'



IL SIZE: INTEGER range 0 .. MAXIL SIZE;

-- size of result

ILSCALE: INTEGER range -MAXSCALE .. MAXSCALE;

ILSIGNED: BOOLEAN;

-- true if signed ie. possibly negative

ILNEG: BOOLEAN; - set true for negated relation

when VALU

IL VALU: INTEGER range 0 MAXVALUNO ;

- valu number

when PRIM =>

ILSTDOPND: SUMPTR; -- symbol table entry

when LINE =>

IL LINENUMBER: SRKEY; record key line number

when INTLIT =>

IL INT: INTEGER; -- converted INTEGER

when FLTLIT =>

ILFLOAT: FLOATING; -- converted real number

when CHARLIT =>

IL CHAR: CHARACTER; -- single character

when BOOLIT =>

IL BOOL: BOOLEAN;

when STRLIT >

ILSTRP: SYMPTR; - symbol table character STRING

Vol 5
B-8

AL



when ON 1 OFF 1DUMP =>

ILDBPI: INTEGER; -- phase number

ILDBNO: INTEGER; -- debug options

IL DCOUNT: INTEGER; -- debug count

when others => -other operator Values Of IL OPERATOR

end case;

end record;

7 t

Vol 5

B-92 4)



APPENDIX C - ADA RELOCATABLE OBJECT FORMAT

The primary result of an Ada compilation is a relocatable object. Several

relocatable objects may be combined using the Linker to produce a composite

relocatable object or a loadable object target-independent, relocatable

object.

A relocatable object comprises several forms of information. This

information and its purpose is listed below:

1. Identification - contains library unit/subunit name and version,

compiler/linker version, compilation time stamp, and target

identification.

2. Preamble - includes lists of defined names and addresses, external

names, exception names, program sections with their sizes and

attributes and a starting address if applicable. This data alone

must be sufficient for the Linker to perform the allocation and

resolution processing.

3. Unit-specifications - comprises all information produced by the

compiler necessary to support library unit visibility, insure

compilation order validation and perform library unit resolution.

The names of other library units that have been compiled using this

unit_spec is contained here.

4. Symbolic data - used by run-time facilities to support debugging,

performance monitoring, data recording and subsequently data

reduction. Included in the data are identifiers and their

respective attributes, statement description information and flow

graphs, compilation statistics and support for run-time statistics

collection.

5. Concordance data describing library unit name references and

definitiona. This is used by the Linker at user option to produce

a combined external symbol concordance.

6. Object data with relocation description information used by the

Linker to produce an executable program image.

Vol 5
C-I



As part of the compilation and/or linking process, certain parts of the

object module are copied, on option, into the active program library.

Separate command utilities are provided which shall allow the placing, or

replacing, of this data in a library (see Program Libraries).

The format of a relocatable object is defined below:

type PROCTYPE is (ADA, LINKER, ASSEM); -- creating processor

type LIB TYPE is

(SUBPRG, SUBPRGBODY, PKG, PKGBODY, SUBUNIT, COMPOSITE);

type NAME is STRING (1..72);

type VECTOR is array (INTEGER range <>) of BOOLEAN;

pragma pack VECTOR;

type COMPUTERS is (IBM370, INTERDATA_8_32);

type RELENUM is

(IDENT, PREAMBLE, UNIT SPECS, DEBUG, CONCORD, DATA, TERM);

type PROT-TYPE is (READ, READWRITE, WRITE, CODE);

type LOCCTR is

record

LOC NAME: NAME;

SEG NO: INTEGER;

ADDR: INTEGER;

SIZE: INTEGER;

PROTECTION: PROT-TYPE;

ATTR: BYTES;

end record;

type DEFS is

record

DEFNAME: NAME;

DEFADDR: INTEGER;

end record;

type PATH is

record

FROM,

TO: PATHINDEX;

end record;

Vol 5 L:
C-2



type PATHINDEX is range 1 .. MAXPATHS;

type BLOCK_-INDEX is range 1 .. MAX-BLOCKS;

type EXITCAUSE is (GO, IFF, LOP, CAS. PRC. EXCEPT);

type BLOCK is

record

BEG,

EN: ILINDEX;

SUPER EXIT: BOOLEAN;

FORDOM,

BACKDO: PATH-INDEX;

NOFD,

NOFD: INTEGER;

EXIT -DESCR: EXITCAUSE;

end record;,

type STMT is

record

PATHTO,

PATHFROM: BOOLEAN;

VARSSET: INTEGER;

OPTINDICATOR: VECTOR (OPTTYPE);

SET VARS: SETVARSINDEX;

TIMING: DURATION;

BEGADDR.

IMPLADDR: ADDRESS;

end record;

Vol 5
c-3



type REL (RELTYPE: REALENUM; UPPERBOUND : INTEGER) is

record

NO WORDS: INTEGER;

CHECKSUM: VECTOR (1 .. TARGET SIZE);

case RELTYPE is

when IDENT =>

LIB UNIT: NAME;

OBJNAME: NAME;

PROCESSOR: PROC_ TYPE;

PROCTIME, CREATE: TIME;

TARGET: COMPUTERS;

OBJVERS: INTEGER;

when PREAMBLE =>

NODEFS,

NOEXTS,

NOLOCS,

NOEXCS: INTEGER := UPPERBOUND;

DEF: array (1 .. NO DEFS) of DEFS;

EXCEPTNAME: array (1 .. NO EXCS) of NAME;

LOCS: array (1 .. NOLOCS) of LOCCfR;

EXTNAME: array (1 .. NO EXTS) of NAME;

when CONCORD =>

NOENTS: INTEGER := UPPERBOUND;

REFNAME,

LIB NAME: array (1 .. NO ENTS) of NAME;

when UNITSPECS >

NOTABS : INTEGER;

TAB: array (1 .. NOTABS) of SYMTAB;

Vol 5
C-4



whnDEBUG =>

NOSTMTS,

NO SYMBOLS,

NOSETVARS.

NOBLOCKS,

NOPATHS: INTEGER :~UPPERBOUND;

SYMBOLS: array (0 .. NOSYMBOLS) of SYMTAB;

PATHS: array (0 No NOPATHS) of PATH;

BLOCKS: array (0 .. NOBLOCKS) of BLOCK;

STMTS: array (0 NOSTMTS) of STMT;

when DATA =>

null;

when TERM =>

null;

end record;

Vol 5
C-5



APPENDIX D PROGRAM LIBRARIES

Program Libraries are used to provide a repository for interface information

Used as communication between the Compiler and Linker tools or successive
invocations of these tools.

Additionally, information has been placed in the Program Libraries to

significantly improve the performance of the Linker and to provide
additional user oriented facilities. Both purposes shall be described in

more detail further on.

The contents of a Program Library are presented below.

1. For each compilation unit, the Compiler shall distill Information

from the symbol table that represents the external interface

specification of the compiled unit that is necessary to permit

referencing by separate units of the visible entities of the

compiled unit. Hereafter, this distillation is referred to as the
"unit specs".

2. Derivation and location information shall also be maintained In the

Program Library to identify the particular object version

associated with a compilation unit, and the tool and input object

versions (and associated unit-specs) used in its creation.

Additionally, compilation and linking date and times shall be

recorded to validate compilation order compliance.

3. Relocatable object preambles shall also be maintained in the

Program Library. This information shall permit the Linker to

complete its first pass (object requirement analysis, symbol

resolution and allocation) by using solely the information from the *
Library. Only during the second pass when creating the executable

object must the Linker access the required relocatable object. The

primary benefit from this approach is the elimination of the

opening of each object during the first pass, that has historically

been an expensive operation in operating systems.

Vol 5
D-1



The Program Library to be used for compilation or linking shall be

identified by default or by explicit naming in the compile or link command.

At compilation when a "with" statement is encountered, the Compiler shall

access the indicated unit-specs and add this information into the symbol

table. Upon completion of a compilation, the unit-specs for the current

compilation unit shall be entered into the Program Library. The unit-spec

for a previous version of the compilation unit shall be superceded. A

library utility shall allow the user to select a particular relocatable

object version's unit-spec to be entered into the library.

When an executable object is to be created, the Linker is invoked. The

relocatable objects to be used are accessed through the Library and the

executable image is created. As part of this process, the Linker shall

compare the date and time of each unit-spec with the date and time of all

references to that unit-spec to insure valid compilation order. Any

discrepancies shall be diagnosed by the Linker.

An additional feature of the Linker is to produce on user option a global

concordance listing of references to unit-spec names. This listing shall

allow a user to easily locate all compilation units that reference a visible

entity of another compilation unit thereby simplifying large program

maintenance procedures and eliminating unnecessary recompilations. To

support this feature, the Compiler shall enter into the Program Library a

list of names referenced by each compilation unit from a "with" ed

compilation unit.

Vol 5
D-2



APPENDIX E - LISTINGS

The Compiler shall produce the following listings: source, dianostics, cross

reference/attribute, object, statistics, environment, and system

management. There shall be Compiler options to produce or suppress these

listings. On the top of each page of each of these listings there shall be

a header line containing: the page number, the date and time of compilation,

the name of the compilation unit. and the version of the Compiler.

Vol 5

E-I



Source Listing

The Compiler shall produce a listing of the source statements it processes

in the course of a compilation. There shall be various options to control

the contents and format of the listing.

The listing itself shall be optional. The option to turn off the listing

takes precedence over any list progmas In the source program. There shall

also be an option to print the lines which are processed as the result of an

INCLUDE pragma. This option shall also allow the printing of lines of

included text to be suppressed, even if the source from the compilation unit

is being printed.

The list pragmas shall only be honored in those portions of the source where

the Compiler options specify that printing is to occur. Within such regions

source shall be printed or printing shall be suppressed according to the

list pragmas.

There shall be an option to produce a prettyprinted listing. This shall be

independent of the option to produce a reformatted source file.

The Compiler shall assign statement numbers to each source statement it

processes. There shall be an option to use these assigned numbers or the

source keys in the listing.

Each page of the source listing shall contain column numbers.

Each line of the listing shall contain: the statement number, the source key

number, the source line, the lexical nesting level, the compound statement

nesting level, and an indication as to whether the line was included.

There shall be two options for diagnostics. One option shall control the

level of messages to be printed. The other shall control the placement of

the messages.

There shall be five levels of messages: note (N), warning (W), error (E),

serious error (S) and fatal error (F), in order of increasing severity. On

option the printing of notes or notes and warnings may be suppressed.

Vol 5
E- 2



Error messages shall be printed on the first available line following the

line on which the error was detected. If multiple errors are detected on

one source line, each error shall be printed, one message to a line. For

each error for which it is applicable, there shall be a pointer to the

column or columns where the error occurred.

There shall be an option to print all diagnostics at the end of the listing,
rather than interspersed with the source.

Error mesages, regardless of where they are placed shall contain the
following: statement number or key, if applicable, an error severity

indicator, an error message number, and the text of the message. The

message text shall be a description of the error and may Include inserts

such as names or column numbers.

Vol 5
E-3



Assembly Listing

The assembly listing is produced by the assembler phase of the Compiler. It

is more correctly called a pseudo-assembly listing sine the listing is

produced by "disassembling" machine instructions obtained via the code file,

rather than as the result Of processing assembly language source.

The listing can be Used for a numxber of purposes. Perhaps the Most

important Use is an an aid in Compiler development and maintenance. The

listing allows a visual inspection of the generated code. Such a listing

can also be Useful for debugging at the machine-level (such as on a target

which does not have a source level debugger).

The listing itself is a side-by-side listing which contains both

pseudo-assembler source and the octal (or hex) representation of the

generated code. Since the listing is a human-readable rendering of machine

code, it is, necessarily, largely machine dependent. Much of the

processing, however, is the same for various targets. It is possible,

therefore, to make the generation of the assembly listing largely

table-driven in the interest of retargetability.

The format that shall be Used shall be basically the same for all machines.

The radix for the printing of numbers shall be octal or hexadecimal,

depending on the natural radix for the target. The following types of lines

shall appear in the listing: source, comments, error indicators, segment

indicators, and machine code.

Comments

Co:anents shall be used to make the assembly listing more readable. They

shall include indications that code belongs to prologs, exception handlers,

etc.

Error Indicator

A line indicating that an error was present shall be included in the

assembly listing In he code for the statement in which the error was

detected.

Segment Indicators

'1
Vol 5
E- 4



Special lines shall delimit segments or control sections

Machine Code

Machine instructions shall be represented both symbolically and in the

native radix. The following is a list of fields that shall be present in

machine code line, together with an explanation of their contents.

Location - The offset from the start of the segment for this particular

instruction. (Displayed in the native radix).

Contents - The contents of the storage unit(s) containing the

instruction. (Displayed in the native radix. The contents

field shall consist of subfields each of which contains an

element of the instruction (e.g., op code).

Relocation - For each field in the contents that is relocatable, a flag

shall be included in order to indicate the type of

relocation. The following codes shall suffice for most

targets:

blank absolute

C code

D data

K constants

X external

Operand(s) - The address(es) of the operand(s) of the instruction shall be

displayed, if the actual address differs from the address

subfield in Contents. This can occur on a machine which uses

base registers (e.g., the IBM 370).

Line The line number of the source statement that caused this code

to be generated is displayed in decimal.

Label The user-defined or Compiler-generated label associated with

this location is displayed. User-defined lables are

represented by their source name. Compiler-generated labels

are given generated names.

Vol 5

.... .. ... . ... ii



Op code - The mnemonic op code for this instruction, or the appropriate

pseudo-op for data, is displayed.

Operands - The operand(s) appear in a pseudo-assembly language format.

This shall be a standard form, based on the IEEE

Microprocessor Assembly Language Standard. One known

extension is allowing double indexing on the 370.

As was mentioned previously, the bulk of the formatting of the assembly

listing shall be table driven. This requires tables that indicate where

fields in the instructions are located and where they should be printed.

The "assembled" portion of the listing shall be formatted from the

instruction itself rather than directly from the code file, in order to

minimi-e the chance of there being a discrepancy between the bit patterns

printed out in the listing and the bit patterns that are stored in the

relocatable object.

The "assembler source" portion of the listing shall be formatted fromthe

code file, since there is information (such as symbol table pointers) that

does not appear in the relocatable version of the instructions, but is

necessary to produce symbolic names. This portion of the listing could be

more target-dependent than the "assembled" portion, since there is more

variety in assembler syntax than in instruction word formatting. In order

to minimize the impact of retargetting, a standard format shall be used

wherever possible, sacrificing compatability with local assemblers for ease

of retargetability.

Vol 5

E-6



Attribute/Cross-Reference Listing

The Compiler shall generate combined attribute and cross-reference

listings. Combining the two listings shall aid the user. In particular, it

shall be easier to verify that unintended overloading resolution did not

take place.

Several listing options shall be available.

It shall be possible to select an "attributes only" listing or an

attribute/cross reference listing.

There shall be an option that will allow user control of the order in which

entries are sorted. One choice shall be to have all of the object names

sorted according to the collating sequence defined in the Ada Reference

Manual. Another shall be to sort by scope and qualified name.

There shall be an option to allow the inclusion or exclusion of reserved

wrds, attributes, operators from package standard, and constants.

There shall be an option to allow the inclusion or exclusion of unreferenced

entities.

The following lists the attributes that shall appear in the attribute

listing for each different type of entity. Those attributes that appear in

upper case are defined in the Ada Reference Manual.

All entities

Name

Defining compilation unit

All Objects

Type

Representation (float, double float, etc.)

Location -- ADDRESS for static data; stack frame offset otherwise

Vol 5
E-7



W1

Objects in records

FIRST BIT

LAST BIT

POSTION

Object of array type

FIRST

LAST

Enumeration Literals

Type

Representation

POS

PRED

SUCC

Labels

Location

Subprogram

Location

Parameter names

Parameter types

Result type (if function)

Inline

Linkage

Machine code

Code size

Data size

Packages

Location

Code size

Data size

Vol 5
E-8



Block

Location

Data size

Generic

Formal parameters

Exception

Task or Task Type

Location (task only)

Body location

Entries

All Types (except task type)

BASE

Limited

Private

Packed

Controlled

Scalar types

FIRST

LAST

Fixed point types

DELTA

ACTUALDELTA

BITS

LARGE

MACHINEROUNDS

Vol 5
E-9

-'



Floating point types

DIGITS

MANTISSA

EMAX

SMALL

LARGE

EPSILON

MACHINERADIX

MACHINEMANTISSA

MACHINEEMAX

MACHINEEMIN

MACHINEROUNDS

MACHINEOVERFLOWS

Array type

FIRST

LAST

Set/Use

The set/use information consists of the source key for the declaration, and

a sorted list of source keys for sets and uses. Sets and uses are sorted

together in order of increasing source key. In the listing an indication

shall be given as to which program unit contained the reference.

Vol 5

E- 10

wild qp



Statistics Listing

The Compiler shall produce a listing of various static statistics on

option. Dynamic statistics are produced by the Debugger.

The level of statistics printed shall be controlled by an option. Brief

statistics shall only include totals for the various groups. Verbose
statistics shall include a breakdown by Individual group members. These

breakdowns shall provide both the number and precentage of occurrences.

The following statistics shall be printed:

number of charcters

number of lines

average line length

average number of leading blanks

number of symbols (broken down by type)

number of declarations (broken down by type)

number of statements (broken down by type)

number of compound statements (broken down by nesting level)

number of procedures, functions, packages, tasks (by nesting level)

calls (broken down by number of parameters)

operands, operators in statement (broken down by number)

operands, operators (broken down by type)

operand locations (broken down by relative scope, offset)

overloading (broken down by number of potential chocies)

number of generic instantiations

pragmas (broken down by type)

errors (broken down by severity)

errors (broken down by statement type)

number of optimizations performed (broken down by type)

machine operations generated (broken down by type)

number of symbol table entries (broken down by type)

space required for symbol table

for each intermediate file:

sizes

number of entries (broken down by type)

Vol 5

E-11I



System Management Listings

The Compiler shall produce various listings to facilitate Its development

and maintenance. Symbolic dumps shall be produced on option for the

Compiler's internal files, including IL, code file. and the preset file. A

symbol table dump shall be available, both for the entire table and for

individual entries. A similar facility shall be provided for the Ada Debug

Tables (ADTs).

Options shall be provided so that the major tables internal to the various

Compiler phases can be dumped symbolically. In addition traces May provide

a trace facility.

Vol 5
E-12



APPENDIX F - ADA RUN-TIME LIBRARY

Standard and Text Input-Output

Input-output facilities shall be fully defined in the packages INPUT

OUTPUT and TEXT 10.

The generic package INPUTOUTPUT shall have to be instantiated by a user

for each particular file ELEMENT TYPE used; also, the TEXT 10 generic

packages (INTEGER_10, FLOAT _10, FIXED__10 AND ENUMERATION_10) for

integer, floating, fixed and enumeration types shall have to be

instantiated for each particular type used. The Compiler shall have no

special or intrinsic knowledge of the predefined I-0 packages.

Low level input-output shall be defined in the system packae LOW LEVEL

10. The device types, data types and other 1-0 functions supported

shall be target dependent and shall be supplied as part of the target

system specification and requirements.

Tasking

Ada tasking functions shall be under the control of a run time tasking

package. The compiler shall generate calls on the procedures and

functions defined in the tasking package for all Ada tasking

requirements. Reference Volume 2, KAPSE Framework, Section 3.3.6 Task

Manager, for the definition of the tasking package.

Math and Data manipulation run time library routines

The math and general data manipulation routines required by the Compiler

are listed below.

Exponentiation

Functions shall be required to perform integer to integer and floating

in integer exponentiation.

function Expon (I: INTEGER; J:NATURAL) return INTEGER;

function Expon (Fl: FLOAT; I:INTEGER) return FLOAT;

Whether explicit routines shall be needed for the various forms of

integer and floating (short, regular, long) shall be target dependent.

Vol 5
F-1



Generalized Move routines

General move routines shall be defined for bit, character and word

operands.

type BOOLARRAY is array (INTEGER range<>) of BOOLEAN;

type CHAR ARRAY is array (INTEGER range<>) of CHARACTER;

type WORDARRAY is array (INTEGER range<) of INTEGER;

procedure Move (Source: BOOLARRAY; Sink: out BOOLARRAY);

procedure Move (Source: CHAR-ARRAY; Sink: out CHAR_ARRAY);

procedure Move (Source: WORDARRAY; Sink: out WORDARRAY);

Generalized Compare Routines

General compare routines shall be defined for bit, character and word

operands.

type RELATION is (EQUAL, LESS, GREATER);

function Compare (Rel : RELATION;

Left : BOOLARRAY;

Right: BOOL ARRAY) return BOOLEAN;

function Compare (Rel : RELATION;

Left : CHARARRAY;

Right: CHARARRAY) return BOOLEAN;

function Compare (Rel : RELATION;

Left : WORD ARRAY;

Right: WORDARRAY) return BOOLEAN;

Generalized Legical Operation Routines

General logical operation routines shall be defined for bit and word

operands. Versions of these routines shall exist both as functions and

as procedures.

Vol 5
F-2



type LOGICALOP is (AND, OR, XOR);

procedure Logic (Op : LOGICALOP;

La : BOOL ARRAY; - first operand

Lb : BOOLARRAY; -- second operand

Res : out BOOLARRAY); - result operand

procedure Logic (Op : LOGICALOP;

La : WORDARRAY; -- first operand

Lb : WORDARRAY; - second operand

Res : out WORDARRAY); - result operand

function Logic (Op: LOGICALOP;

La: BOOLARRAY; -- first operand

Lb: BOOL ARRAY) - second operand

return BOOLARRAY;

function Logic (Op: LOGICALOP;

La: WORDARRAY; -- first operand

Lb: WORD ARRAY) - second operand

return WORDARRAY;

Generalized Concatenation Routines

General concatenation routines shall be defined for one dimensional bit,

character and word arrays. Versions of these routines shall exist both

as functions and as procedures.

procedure Catenate (La : BOOL ARRAY;

Lb : BOOLARRAY;

Res : out BOOL ARRAY);

function Catenate (Ls : BOOL ARRAY;

Lb : BOOL ARRAY) return BOOL ARRAY;

Vol 5
F-3



procedure Catenate (La : CHAR-ARRAY;

Lb : CHARARRAY;

Res : out CHARARRAY);

function Catenate (La : CHAR-ARRAY;

Lb : CHARARRAY) return CHARARRAY;

procedure Catenate (La : WORDARRAY;

Lb : WORDARRAY;

Res : out WORDARRAY);

function Catenate (La : WORD-ARRAY;

Lb :WORDARRAY) return WORDARRAY;

Numeric Conversion Routines

Numeric conversion routines shall be required (eg. float to integer,

integer to fixed, fixed to float etc.). Which conversions shall be

performed with in-line code and which with library subroutine is target

dependent and shall be separately specified for each target.

Time Utilities

Library functions to support the requirements of Package CALENDAR shall

be needed.

function Clock () return TIME; -- current APSE time

function TimeSum (a : TIME;

b : DURATION) return TIME;

function Time Diff (a : TIME;

b : TIME) return DURATION:

Vol 5
F-4



Image and Value Functions

A number of conversion and formatting functions shall be defined to

support the IMAGE and VALUE attributes. These routines shall also be

used by the TEXT_-10 library routines for the conversion and formatting

requirements of GET and PUT.

Parameter Array Addressing Routines

A formal parameter array with unconstrained array bounds shall be passed

as an array packet. The packet shall contain the address of the array

and for each dimension the lower bound, upper bound and the dimension

multiplier.

A number of array addressing routines (one, two, three and

n-dimensional) shall be defined which shall perform boundary checking

and array address calcuation given the actual subscripts and the array

packet.

Where bounds checking is suppressed, array address calculation shall be

generated as in-line code even for unconstrained parameter arrays.

type ARRAYBOUNDS is

record

LowerBound: INTEGER;

Upper-Bound: INTEGER;

Multiplier: INTEGER;

end record;

type ARRAYPACKET_1 is

record

Location: INTEGER; -- base address

Bounds: ARRAYBOUNDS;

end record;

Vol 5
F-5



type ARRAYPACKET_2 is

record

Location: INTEGER; - base address

Bounds 1: ARRAY BOUNDS;

Bounds 2: ARRAYBOUNDS;

end record;

type ARRAY PACKET3 is

record

Location: INTEGER 1;-- base address

BoundsI: ARRAYBOUNDS;

Bounds 2: ARRAYBOUNDS;

Bounds 3: ARRAYBOUNDS;

end record;

--A(I)

function ArrayAddress (Apl : ARRAYPACKET_1;

I : INTEGER) return INTEGER; -- address

-- A(IoJ)

function ArrayAddress (Apl : ARRAYPACKET_2

I0J : INTEGER) return INTEGER; --address

- A(I, J, K)

function Array._Address (Apl : ARRAYPACKET_3;

I,JK : INTEGER) return INTEGER; --address

Vol 5
F-6



Volume 6

COMPUTER PROGRAM DEVELOPME~NT SPECIFICATION

(TYPE B5)

COMPUTER PROGRAM CONFIGURATION ITEM

MAPSE Linker

Prepared for

Rome Air Development Center

Griffiss Air Force base. NY 13J441

Contract No. F30602-80-C-0292

Vol 6



TABLE OF CONhNTS
Vol 6
Page

Section 1 - Scope ..................................................... 1-1

1.*1 Identification ............................................... 1-1
1.2 Functional Summary ............ ......................-........ 1-1

Section 2 -Applicable Documents......... ............................ 2-1

2.1 Programi Definition Documents .............................. 1
2.2 Inter-Subsystem Specifications ..................... o..........21
2.3 Military Specifications and Standards ...................... _
2.4 Miscellaneous Documents ............................... 2-2

Section .~- Requirements ............................................ -

.l Introduction .................... o.................... o.........-i
3.1.1 General Description ...........................................-i
3.1.2 Peripheral Equipment Identification ...........................3-
3.1.3 Interface Identification ......................................- 1
3.1.4 Function Identification ............ o................ -

3.ie Functional Description .................................... 2
3.2.1 Equipment Description ............................... o.........3-2
3.2.2 Computer Input/Output Utilization ............................-
3.2.3 ComputerlInterface Block Diagrami.......................... 2
3.2.4 Program Interfaces ............................................- 4
3.2.5 Function Description ..........................................36

3.3 Detailed Functional Requirements ............................. 3-b
3.3.1 Program Structure Analysis - Introduction .................... 3-9
3.3.2 Linked Object Creation ................ o.................... 1
3.4 Adaptation ................ o............................ 3-15
3.4.1 General Environment ...........................................- 15
3.4.2 System Parameters ................................... 3-15
3.4.3 System Capacities.... ..................................... J-15
3.5 Capacity ..................................................... 3-15

Section 4 - Quality Assurance Provisions .............................. 4-1

4.1 Introduction ................................................. 4-1
4.1.*1 Subprogram Testing................................ -

4.1.2 Program (CPCI) Testing.,................................... 4-
4.1.3 System Integration Testing .................................. 4-3
4.2 Test Requirements..... ................... *....................4-.)
4.2.*1 Inspection .................. . .................. 4-4
4.2.2 Review o1' lest Data ...................... 0....................4-4
4.a.3 Special Tests.........o................................ 4-4
4.3 Acceptance Test Requirements. ................................ 4-4

Vol 6

iiiY



Page
Section 5- Documentation ....................................... .... 5-1

S.1 General .................................................... 5-1
5.1.1 Computer Program Development Specification ................. 5-1
5.1.2 Computer Program Product Specification ..................... 5-1

5.1.3 Computer Program Listings................................. 5-2
5.1.4 Maintenance Manual. ................................ ....... !)-2
5.1.5 Users Manual ............................................... 5-2
5.1.6 Retargetability/Rehostability Manual ....................... 5-3
5.1.7 MAPSE Tools Reference Handbook .............................

Appendix A - Directives ............................................. A-1

Appendix B - Program Initiator ...................................... B-1

Appendix C - Loading ................................................ C-1

iv

S

... .i , .. . H i illrl ~ml Ii... . ........



SECTION 1 - SCOPE

1.1 IDENTIFICATION

This specification establishes the design, development, and test

requirements for the MAPSE Tool Set member, the Linker. The purpose of this

specification is to define the Linker being designed as part of the Ada

Integrated Environment contract for RADC. This document will serve to

communicate the functional design decisions that have been adopted and to

provide a baseline for the detailed design and implementation phase and to

identify the interfaces between the Linker, the KAPSE system and the user.

1.2 FUNCTIONAL SUMMARY

The Linker is the MAPSE tool which is used to link several relocatable

objects into a single object for loading purposes or for further linking.

The Linker will permit the structuring of programs into multi-level

overlays, it will support multiple location counters, resolution of external

references, specification of symbolic equates and name definition,

allocation of stack and heap space, relocation of address references, and

program stub generation.

Vol 6

1-

, T '- ' , ' ..... .. . . . . . . ,< 7L )



SECTION 2 - APPLICABLE DOCUMENTS

The following documents form a part of this specification to the extent

specified herein.

2.1 PROGRAM DEFINITION DOCUMENTS

1. Reference Manual for the Ada Programming Language, July 1980

2. Requirements for Ada Programming Support Environment, "STONEMAN,"

February, 1980.

3. Statement of Work, Contract No. F30602-80-C-0292, 80 Mar 26.

2.2 INTER-SUBSYSTEM SPECIFICATIONS

4. System Specification for the Ada Integrated Environment.

5. Volume 1, Computer Program Development Specification for CPCI KAPSE

Framework.

6. Volume 2, Computer Program Development Specification for CPCI KAPSE

Data Base System.

7. Volume 3, Computer Program Development Specification for CPCI APSE

Command Language Interpreter.

8. Volume 4, Computer Program Development Specification for CPCI MAPSE

Configuration Management System.

9. Volume 5, Computer Program Development Specification for CPCI MAPSE

Compiler.

10. Volume 7, Computer Program Development Specification for CPCI MAPSE

Editor.

11. Volume 8, Computer Program Development Specification for CPZI MAPSE

Debugger.

2.3 MILITARY SPECIFICATIONS AND STANDARDS

12. MIL-STD-483, Configuration Management Practices for Systems,

Equipment, Munitions, and Computer Programs, 1 June 1971.

13. MIL-STD-490, Specification Practices, 30 October 1968.

Vol 6
2-1



2.4 MISCELLANEOUS DOCUMENTS

1. Ada Compiler Validation Implementers' Guide, October 1, 1980.

Vol 6
2-2



SECTION 3 - REQUIREMIENTS

3.1 INTRODUCTION

This section provides the general description, identifies the external and

internal interfaces, provides the functional requirements and presents the

internal characteristics Of the Configuration Item identified as the Linker.

3.1.1 General Description

The Linker is used to combine one or more relocatable objects, including any

referenced objects from the user program library (or from higher level

project or system libraries), and produce a single relocatable object or

load object and associated informational listings.

3.1.2 Peripheral Equipment Identification

The Linker will interface with peripheral equipment only as a potential

source for its directives. However, since this interface will be through

the standard Ada I/O package, the devices will be transparent to the Linker.

Although the Linker is largely machine independent, the Linker will have a

dependency on the target calling convention and location counter

characteristics. Initially the computer equipment of concern is identified

as the IBM VM/370 and the Interdata 8/32.

3.1.3 Interface Identification

The Linker interfaces are identified as the APSE command language

interpreter (ACLI), the KAPSE Data Base System (KDBS), the Ada Compiler, the

Loader and the user through the Linker Directive Language.

3.1.4 Function Identification

The Linker is functionally divided into two main phases in the linking

process. These two phases are identified below.

3.1.4.1 Program Structure Analysis and Program Order Validation

The first phase of ti.e Linker validates the order of compilation

requirements of the objects being linked and produces a fully defined

program structure of the output object. The program structure includes

Vol 6

3-1



segment allocation, symbol resolution and any required library unit

inclusion. The first phase is performed through access to the program

library only and does not require access to the relocatable objects being

linked.

3.1.4.2 Object Creation and Listings

The second phase of the Linker accesses the relocatable objects being

linked, relocates and forms the memory image of the linked segments and

writes the output object. The program library is updated at this time and

the map and concordance listings are produced.

3.2 FUNCTIONAL DESCRIPTION

This section describes the functions of the Linker, the program and

equipment relationships and interfaces identified above, and the

input/output utilization in the Linker.

3.2.1 Equipment Description

The computers upon which the Linker will be initially hosted are the IBM

VM/370 and the Interdata 8/32.

3.2.2 Computer Input/Output Utilization

Linker directives are assumed to exist in a standard text object or in the

std in file. Listing output is written to the std out file and diagnostic

messages are directed to the std err file.

3.2.3 Computer Interface Block Diagram

The relationship between the Linker and the MAPSE system is shown in Figure

3-1:

Vol 6
3-2

" m , - I 11 II II I
I  
....

.. .... . .f II I lIi lIl . .



MAPSE PROCESS LEVEL KERNEL PROCESS LEVEL

ACLI I

L----------------------
?P O. 21 U02

FigureEN ARCIVE IntrCceUiara

-2i.
RT' /-

11. 
, PAC AG



3.2.4 Program Interfaces

This paragraph identifies the Linker interfaces and their purposes.

3.2.4.1 APSE Command Language Interpreter (ACLI)

The Linker is invoked through the ACLI either from a user command at a

terminal or from another MAPSE tool.

3.2.4.2 KAPSE Data Base System (KDBS)

The KDBS is called through the Standard I/O package to perform input/output

on program libraries and relocatable objects. The KDBS is also called

through the Standard I/O package to perform directive input and to output

various Linker listings to stdout and stderr.

3.2.4.3 Linker Invocation Interface

The Linker will be invoked through the ACLI. The Linker command in general

contains the following information:

1. the objects to be linked together and their structure

2. the name to be given to the linked object

3. linker options

The linker command exists in two forms, the first form is where the objects

to be linked together are explicitly listed, the second form is where the

objects to be linked and the desired program structure are specified with

linker directives. With the first form the specified objects are linked

together in a single unstructured segment.

The ACLI linker command is shown below.

1. LINK ((obj-1 {,obj-2 ...}), NAME:>obj-name, OPT=>options,

ENTRY=>ext-name);

2. LINK (link-dir, NAME=>obj-name, OPT=>options)

The parameter names are optional.

Vol 6
3-4



The first command specifies a set of relocatable objects to be linked

together into a single segment, the second command specifies the name of a

standard text object containing linker directives which specify the modules

to be linked together and the desired program structure. The link command

directives are described in Appendix A.

Parameter Definitions

obj-n: APSE relocatable object name.

link-dir: APSE text object name containing Linker directives.

NAME: The name to be given to the output object module may be

specified. The default name is obj-1'RLL or obj-1'XQT

for a partial link or a full link respectively.

ENTRY: The external symbol which is to be the entry point of a

load module may be specified. The default is the first

compilation unit name in the link.

OPT: The Link options are expressed as a series of single

letters which may appear in any order.

The linker options are shown below.

Option Code Meaning Default

Object Type P Partial Link Load Object

Listing L Map Listing No Map Listing

Concordance C Concordance No Concordance Listing

Debug Tables X Exclude Debug Tables Debug Tables Included

Visibility V Full Visibility for Only unreferenced

external symbols external symbols made

visible

Thus with the full default options an executable load object would be

produced with the Debug tables included, the only visible external symbol

would be the entry point and neither a map nor a concordance listing would

be produced.

Vol 6
3-5

- U- 9.'1



3 .2.4.4 Linker Directive Language

Linker directives may be used to define the structure and allocation of a

linked object. The Linker directive language is defined in Appendix A.

3.2.5 Function Description

The Linker is invoked through the ACLI, either directly from a terminal or

from another tool, with a 'LINK' command with parameters. The parameters

specify the Linker options, the name of the output object to be written and

the actual objects to be linked. The objects to be linked can either be

explicitly named in the LINK command (for a simple single segment program

structure) or can be specified through Linker directives. Linker directives

specify the content, allocation and structure of the program to be linked.

The output of the Linker can either be a relocatable object - which can be

included in another Link, or a Load object - which can be loaded and

executed. The Linker performs the final checking for the order of

compilation requirements and optionally produces a map and concordance cross

reference listing of the linked object.

The following paragraphs outline the functional Linker requirements which

are needed to provide a useful, user-oriented development system for

embedded computer applications.

3.2.5.1 Basic Linking Functions

The Linker will permit the structuring of programs into multi-level

overlays, it will support the use of multiple location counters, resolution

of external references, specification of symbolic equates and name

definition, allocation of stack and heap space, relocation of address

references, and program stub generation.

3.2.5.2 Partial Linking

To facilitate the development of large systems, the Linker will permit

collection of several programs into a larger but still relocatable program.

The format of the output program will be the same as the input program

produced by the Ada compiler. A user may select those entry points that are

to be visible in the output program and the names these points are to be

Vol 6
3-6



known by. External references satisfied by entry points contained in the

programs being combined will be resolved; unresolved external references

will be passed on in the program produced.

3.2.5.3 Debug Table Processing

Although the symbolic debug tables produced by the compiler for use by the

Debugger will not be treated as resident location counter data, any

addresses occurring in these tables will be resolved and relocated like the

references in the object program code and data.

3.2.5.4 Object Version Genealogy

The Linker will support the MAPSE system in maintaining the history

attributes of the object program produced. In addition to the information

found in the input programs, the Linker will include the list of the

programs being linked to create the new program and the version of the

Linker being used.

3.2.5.5 Compilation Order and Version Validation

The Linker will be the tool with the ultimate responsibility to inform the

user of compilation order violations and possible interface conflicts.

3.2.5.6 Linker Listings

The Linker will produce user-oriented listings describing the allocation of

the various program location counters and entry points. Included in this

listing will be any attributes of the various location counters such as

read-only, read-write, shareable, self-relocating, instructions etc. The

user may also select a cross-reference listing of the external references.

3.2.5.7 Symbol Definition

In the development of retargetable and rehostable software, such as the

HAPSE itself, there is often a requirement to reference machine dependent

subprograms having different names but with otherwise identical interfaces

and functions. In the Debugger for example, the mechanism for implants will

be target dependent and will also depend upon whether the program being

debugged is a host program or a simulated target program.

Vol 6
3-7



Within the Debugger, calls will be made to the "IMPLANTER" subprogram.

Several implant subprograms will exist with identical interfaces having

names corresponding to the target. The 'EQUATE' directive is provided to

allow two symbols to be equated at link time.

For example, when linking a Debugger for a particular embedded computer, the

specific implanter (e.g., embedded IMPLANTER) could be included and equated

to "IMPLANTER" with the EQUATE directive. Absolute equates shall also be

allowed to support the referencing of hardware dependent absolute locations.

3.2.5.8 Boundary Alignment

The Linker shall allow the specification of boundary alignments for any

externally relocable element of the link such as an object, or a loction

counter. The boundary alignment will be expressed as an absolute address or

as some function of the "next available" location, such as double-word

alignment, next byte, or next page.

3.2.5.9 Object Placement and Stub Generation

The Linker shall allow the user to completely specify the structure and

order of programs in a linked program but will not require the user to do

so. The Linker will automatically include any required objects in an

appropriate position in the linked program. For any included object which

is identified as a "stub" the linker shall supply a dummy procedure which

will execute a return.

3.3 DETAILED FUNCTIONAL REQUIREMENTS

The linking process is divided into two major functional areas. The first

validates the compilation order of the program being linked and builds a

complete program structure with all addresses computed and external

references resolved. The second function creates and writes linked objects

for loading or further linking (partial link) and updates the program

library. These functions will be described in the following 3ections.

Vol 6
3-8

ii



3.3.1 Program Structure Analysis - Introduction

The first function performed in linking is validating the compilation order

of the objects being linked and computing the allocation structure of the

linked objects. This involves accessing the library unit-specifications of

all objects included in the link. These specifications are available in the

user program library or in some other higher level library visible to the

user - a project or system library for example.

3.3.1.1 Inputs

The inputs to the Linker are the linker command, the optional linker

directives, the program libraries available to the user and the relocatable

objects specified in the link.

3.3.1.2 Processing

Initially, the Linker processes the input directives and creates a program

structure description table which defines the program structure as

explicitly directed by the user. (In the absence of directives the program

structure is a single segment.) For each segment the program, structure

table contains a list of all the objects in that segment and a linked list

of all the segments or overlays immediately contained in that segment.

3.3.1.2.1 Program Library Analysis

For each object, the relocatable object preamble record in the program

library is accessed to obtain a list of the externally defined names and

their relative addresses and the sizes of the location counters within the

object. This information is attached to the program structure table. The

derivation information in the program library is accessed to obtain the date

and time of each module's compilation. An object which is identified as a

"stub" will be allocated code space for a dummy return procedure.

The unit specification of each module in a segment is accessed from the

program library to obtain a list of each library unit specified in a "WITH

unit-name" of the module's context specification - these are called the

"implied" library units and their processing is described below.

Vol 6

3-9



First, the date and time of compilation of the implied library units is
checked to validate the required order of compilation - diagnostics will be

issued where the required order is violated.

Secondly, for the Load object option (full link as opposed to a partial

link) the implied library units are actually included in their appropriate

segments In the overlay structure as described below.

Note: With the partial link option, the implied library units are not

included and references to these units will remain unresolved in the output

object. These implied library units will be included when the partially

linked object is linked into a fully linked Load module. In this way common

library units will be properly shared in the final program structure when

referenced from several independent partial links.

3.3.1.2.2 Implied Library Unit Inclusion

Each implied library unit (specified in the context "WITH unit-name" and

also referenced in the object) is added to the list of objects needed in the

current segment unless it is already there or is visible in a higher level

visible segment.

Each implied library unit is also added to the elaboration list of the

segment unless it is already there or is visible in the elaboration list of

a higher level segment. The elaboration list built during the first phase

of linking is an unordered list, associated with each segment, of every

library unit in that segment requiring elaboration at execution time.

As each library unit-name is added to the elaboration list for a segment.

its unit specification is accessed from the program library and all of its

Implied library units are associated with the elaboration list entry (this

will be used to establish an order for library unit elaboration). In

addition, the normal library unit processing described above is performed

for each of the newly implied library units. In this way all of the library

units required by the program being linked are included.

Vol 6
3-10

* qII~~jatii,.i.



3.3.1.2.3 Library Unit Promotion

Before a library unit is added to the list of objects required in a segment,

the program structure is analyzed and if that library unit is implicitly

required (as opposed to being explicitly included) in some other segment of

the program, then the object is promoted to the lowest level segment common
to both segments requiring the object. This process will necessitate the
promotion, in a similar way, of any object implicitly required by the
promoted object. When an object is promoted to a higher level segment, the

elaboration lists of the segments are updated.

When an object is explicitly. included in a segment with the INCLUDE

directive, the object will not take part in the promotion process.

3.3.1.2.4 Allocation and Resolution

Address space allocation is performed on each location counter across the

entire program structure and all externally defined symbols within each

included object are given their final relative address value.

3.3.1.3 Outputs

The final output of the first phase of the linking process is the program

structure table.

The program structure table will be used by the second phase of the linking

process It will contain complete definition and allocation information for

the segment/overlay structure of the linked program.

The entry for each segment in the structure table contains the segment's

name and number, the allocation of each of its location counters, a pointer

to a chain of each of its immediately subordinate segments, a pointer to a
chain of its externally defined symbols and a pointer to its parent segment

-these linked lists define the program allocation and overlay structure.

Vol 6
3-11



3.3.2 Linked Object Creation

The second major function performed by the linker is actually producing the

linked object, updating the program library and printing the Map and

Concordance listings on option.

3.3.2.1 Inputs

The inputs to the second phase of the linking process process are the

program structure table (produced by the first phase), which fully

describes the structure and content of the linked program being built, and

the actual relocatable ojects making up the program. It is during this

phase that the relocatable objects are accessed, relocated and combined as

the linked object.

3.3.2.2 Processing
This phase of the linker produces and outputs the linked object.

This output object is OPENed for output; if the object does not exist it is

CREATEd.

The identification record and unit specification record are produced and

written to the output object. The unit specification record will describe

the main program entry point specification only. Both of these records will

be used to update the program library.

The preamble record is built and output. The preamble record will include a

program structure table. The program structure table describes the

segment/overlay structure of the linked object and separately identifies and

describes each segment in the program.

For a partially linked program, the program structure table is used when the

module is included in larger linked program. For a load object, the program

structure table is used to build the Segment-Load-Table that is used at

execution time for the loading and elaboration of the program segments. The

preamble record will also be used to update the program library.

Vol 6

3-12



3.3.2.3.1 Segment Processing

Each segment in the linked object, which may contain one or more relocatable

objects, is processed separately in the order of the overlay structure.

Each relocatable object module in the segment is read, the object data

records are accessed (this includes the symbolic debugging table records

unless they were excluded) and an image of the included object is built with

all possible relocation being applied. If the object module is identified

as a "stub" the Linker shall supply a dummy procedure for that module which

shall execute a return.

Note. The processed object may still contain unresolved external references

(resulting from a partial link for example) and still contains general

location counter relocation information to support partial linking (where

each location counter may require further relocation when the partial link

is included in another program) and also to support the possible requirement

on some targets for dynamic relocation at load time.

As each segment is processed, its relocated object text is written to the

object module being created. If the concordance listing option were

specified, the concordance records of each object module are accessed and

written to a temporary concordance file. When the link is complete, the

concordance file will be read and sorted and a concordance listing printed.

If the map listing option were specified, a program map will be printed

using the information contained in the program structure table.

3.3.2.2.2 Load Object Initiator Routine

When the Load option is specified, a system supplied root segment is

included in the program to support initiation, segment loading, elaboration

and execution of the program. This root segment will include an "Initiator"

routine and a Segment Load Table. The "Initiator" routine and the Segment

Load Table are described in Appendices B and C.

3.3.2.2.3 Elaboration Routine

When the Load option is specified the Linker will create an "elaboration

procedure" using the elaboration list associated with each segment. The

elaboration procedure will contain a standard procedure entry, a procedure

Vol 6
3-13

''I

' 1.



call to every elaboration prologue routine in the segment and a standard

procedure exit. This elaboration procedure (which will be pure code) will

be inserted into the code location counter of the linked segment and its

address will be entered in the segment load table (see Appendix C). When

segments are loaded this elaboration procedure may be executed as a

parameterless procedure and it will perform the required elaboration of all

the library units in the segment in the proper order.

3.3.2.3 Outputs

The linker produces the following outputs.

A linked relocatable or Load object.

Updates to the program library reflecting the newly linked object.

An optional printed map of the linked program structure.

An optional concordance listing of the linked object showing the

library-unit cross referrnce requirement of ther full program.

Vol 6

3-14
!!4



AD-A1AS 981 COMPUTER SCIENCES CORP FALLS CHURCH VA F/S 9/2
ADA INTEGRATED ENVIRONMENT 11 COMPUTER PROGRAM DEVELOPMENT SPEC--ETC(U)
DEC aD F3OAOZ 80-C 0292I UNCLASSIFIED RADC-TR-81-36N PT_2 N



II 1.0 28 2

111112.0

-HT



3.4 ADAPTATION

This section describes the requirements of the Linker with respect to system
env.ronment, system parameters, and system capacities.

3.4.1 General Environment

Not applicable.

3.4.2 System Parameters

Not applicable.

3.4.3 System Capacities

The size of the memory partition allocated to the Linker will affect its

performance - the Linker will be organized to page unit data into limited

space, and to take advantage of dynamic memory allocation, when available.

3.5 CAPACITY

Not applicable.

Vol 6

3-15



SECTION 4 - QUALITY ASSURANCE PROVISIONS

4.1 INTRODUCTION

This section contains the requirements for verification of the performance

of the Linker. The test levels, verification methods, and test requirements
for the detailed functional requirements in Section 3 are specified in this

section. The verification requirements specified herein shall be the basis

for the preparation and validation of detailed test plans and procedures for

the Linker. Testing shall be performed at the subprogram, program (CPCI),

system integration, and acceptance test levels. The performance of all

tests, and the generation of all reports describing test results, shall be

in accordance with the Government approved CPDP and the Computer Program

Test Procedures.

The verification methods that shall be used in subprogram and program

testing include the methods described below:

1. Inspection - Inspection is the verification method requiring visual

examination of printed materials such as source code listings, normal

program printouts, and special printouts not requiring modification of

the CPCI. This might include inspection of program listings to verify

proper program logic flow.

2. Analysis - Analysis is the verification of a performance or design

requirement by examination of the constituent elements of a CPCI. For

example, a parsing algr-ithm might be verified by analysis.

3. Demonstration - Performance or design requirements may be verified

by visual observation of the system while the CPCI is executing. This

includes direct observance of all display, keyboard, and other

peripheral devices required for the CPCI.

4. Review of Test Data - Performance or design requirements may be

verified by examining the data output when selected input data are

processed. For example, a review of hard copy test data might be used

to verify that the values of specific parameters are correctly computed.

Vol 6

4-1

----------- :----~-~--*-- -- - - - - - - --- ---- --- ~ - - - - -



5. Special Tests - Special tests are 'verification methods other than

those defined above and may include testing one functional capability of

the CPCI by observing the correct operation of other capabilities.

These verification methods shall be used at various levels of the testing

process. The levels of testing to be performed are described in the

paragraphs below. Data obtained from previous testing will be acceptable in

lieu of testing at any level when certified by CSC/SEA and found adequate by

the RADC representative. Any test performed by CSC/SEA may be observed by

RADC representatives whenever deemed necessary by RADC.

Table 4-1 specifies the verification method for each functional requirement

given in Section 3 of this specification. The listing in Table 4-1 of' a

Section 3 paragraph defining a functional requirement implies the listing of

any and all subparagraphs. The verification methods required for the

subparagraphs are included in the verification methods specified for the

functional requirement. Acceptance test requirements are discussed in

Paragraph 4.3.

Table 4-1. Test Requirements Matrix

SECTION TITLE INSP. ANAL. DEMO. DATA. SECTION NO.

3.3.1 Program Structure Anal. X X 1.2.1,4.2.3

3.3.2 Linked Object Creation X X 4.2.1,4.2.3

4.1.1 Subprogram Testing

Following unit testing, individual modules of the Linker shall be integrated

into the evolving CPCI and tested to determine whether software interfaces

are operating as specified. This integration testing shall be performed by

the development staff in coordination with the test group. The development

staff shall ensure that the system is integrated in accordance with the

design, and the test personnel shall be responsible for the creation and

conduct of integration tests.

4.1.2. Program (CPCI) Testing

This test is a validation of the entire CPCI against the requirements as

specified in this specification. Vol 6

S .. .4-2



CPCI testing shall be performed on all development software of the Linker.

This specification presents the performance criteria which the developed

CPCI Must satisfy. The correct performance of the Linker will be verified

by testing its major functions. Successful completion of the program

testing that the majority of programming errors have been eliminated and

that the program is ready for System integration. The method of

verification to be Used in CPCI testing shall be review of test data. CPCI

testing shall be performed by the independent test team.

4.1.3 System Integration Testing

System integration testing involves verification of the integration of the

Linker with other computer programs and with equipment. The integration

tests shall also verify the correctness of man/machine interfaces, and

demonstrate functional completeness and satisfaction of performance

requirements.

System integration testing shall begin in accordance with the incremental

development procedures as stated in the CPDP. Final system integration

shall occur subsequent to the completion of all the CPCIs comprising the

HAPSE system. Two major system integration tests shall be performed: one
for the IBM VM/370 implementation and one for the Interdata 8/32

implementation. The method of verification used for system integration
testing shall be the review of test data.

The test team shall be responsible for planning, performing, analyzing

monitoring, and reporting the system integration testing.

4.2 TEST REQUIREMENTS

Quality assurance tests shall be conducted to verify that the Linker

performs as required by Section 3 of this specification. Table 4-1

specifies the methods that shall be used to verify each requirement. The

last column refers to a brief description of the specified types of
verification as given below. Test plans and procedures shall be prepared to
provide details regarding the methods and processes to be Used to verify
that the developed CPCI performs as required by this specification. These

test plans and procedures shall contain test formulas, algorithms,

techniques, and acceptable tolerance limits, as applicable.

Vol 6
4-3



The Linker is a basic tool of the NAPSE system. After being unit tested,

its major testing will be performed through its actual use in the

development of the MAPSE system. Formal testing of the Linker is described

below.

4.2.1 Inspection

Linked objects shall be validated by utilizing dump facilities and

inspecting the output.

4.2.2 Review of Test Data

Each Linker command shall be tested by preparing scripts and comparing the

output of the Linker with the expected test output. Specific programs and

link directives will be developed to individually test every Linker function.

4.2.3 Special Tests

The MAPSE system itself, the Ada compiler and the other tools will be

considered an extensive test case for the Linker. An operational system and

compiler will verify the linking function here. The Ada compiler validation

test cases used for compiler acceptance will also verify the linking

functions for these programs. Special programs will be developed to

specifically test the Linker's handling of error situations. This will

include not only invalid Link directives and program structures but also

order of compilation violations. Programs will be developed to verify any

capacity limitations imposed by the Linker and to measure Linker performance.

4.3 ACCEPTANCE TEST REQUIREMENTS

Acceptance testing shall involve comprehensive testing at the CPCI level and

at the system level. The CPCI acceptance tests shall be defined to verify

that the Linker satisfies its performance and design requirements as

specified in this specification. System acceptance testing shall test that

the MAPSE satisfies its functional requirements as stated in the System

Specification. The Linker is such a basic tool of the MAPSE system that

delivery of a MAPSE with its tools will effectively constitute delivery of

the Linker.

Vol 6

..- - - - - - - -- - - ,4-



These tests shall be conducted by the CSC/SEA team and formally witnessed by

the government. Satisfactory performance of both CPCI and system acceptance

tests shall result in the final delivery and acceptance of the MAPSE system.

Results of all tests will be made available and the results of the capacity

and performance testing will be incorprated In the Linker User Manual.

\I

Vol 6
4-5

I

~. . . . . . . .. . . . . . .



SECTION 5 - DOCUMENTATION

5.1 GENERAL

The documents that will be produced during the implementation phase in

association with the Linker development are:

1. Computer Program Development Specification

2. Computer Program Product Specification

3. Computer Program Listings

4. Maintenance Manual

5. Users Manual

6. Retargetability/Rehostability Manual

7. MAPSE Tools Reference Handbook

5.1.1 Computer Program Development Specification

The final MAPSE Linker B5 Specification will be prepared in accordance with

DI-E-30139 and submitted 30 days after the start of Phase II. A single

document will be prepared that defines the linker's functional capabilities

and interfaces. Any dependencies on the host and target will be addressed

in the document. Additionally, characteristics of potential hosts and

targets which have had impact on the B5 specificiation will be presented.

5.1.2 Computer Program Product Specification

A type C5 specification shall be prepared during the course of Phase II in

accordance with DI-E-30140. This document will be used to specify the

linker design and development approach for implementing the 85

specification. This document will provide the detailed description which

will be used as the baseline for any Engineering Change Proposals. A single

C5 will be produced for the linker with different sections addressing the

dependencies of the two host computers.

Vol 6
5-1

/-v



5.1.3 Computer Program Listings

Listings will be delivered which are the result of the final compilation of

the linker. Each compilation unit listing will contain the corresponding

source, cross-reference and compilation summary. The source listing will

contain the source lines from any INCLUDEd source objects.

5.1.4 Maintenance Manual

A Linker Maintenance Manual will be prepared in accordance with DI-M-30422

to supplement the C5 and compilation listings sufficiently to permit the

Linker to be maintained by other than the developer. The documentation will

be structured to relate quickly to program source. The procedures required

for debugging and correcting the Linker will be described and illustrated.

Sample run streams for compiling Linker components, for relinking the Linker

in parts or as a whole, and for installing new releases will be supplied.

The data base will be fully documented with pictures of record layouts where

appropriate and data algorithms explained.

The Maintenance Manual will be organized with a standard outline and

separate parallel sections will be delivered which address the tailoring of

the Linker to a particular target or host computer. Debugging aids which

have been incorporated as an integral part of the Linker will be described

and their use fully illustrated. Special attention will be given to the

description of the maintenance mode operation of the Linker used to aid in

the pinpointing of Linker problems.

5.1.5 Users Manual

A Users Manual shall be prepared in accordance with DI-M-30421 which will

contain all information necessary for the operation of the Linker. Because

of the virtual user interface presented by the CLI and the Linker, a single

manual is sufficient for all host computers. Sample linker listings will be

included in the manual.

A complete list of all Linker diagnostic messages will be included with

supplemental information chosen to assist the programmer in locating and

correcting Linker directive errors.

Vol 6
5-2



5.1.6 Retargetability/RehostaPAM aual

In accordance with R&D-137-RADC and R&D-138-RADC, a manual will be prepared

which describes the procedures for retargeting the Linker to a different

computer and integrating this new Linker into the system.

5.1.7 HAPSE Tools Reference Handbook

A MAPSE Tools Reference Handbook will be produced as part of Ada Integrated

Environment contract. The Linker section of the handbook will contain

syntax definitions and examples of the LINK command and the Linker

directives.

i

Vol 6
5-3

-=7



APPENDIX A - DIRECTIVES

Linker Directives

The Linker function can be controlled with directives that specify the

relocatable objects to be included and the structure of the linked program

to be built. These directives may be input from std-in or from a text

object.

The linker directives allow the specification of a multi-level overlay

segment structure, support multiple location counters and allow heap and

stack space allocation.

The individual linker directives are defined below, this is followed by an

example of a linker directive object which builds a simple overlay program

structure.

1. Relocatable object Inclusion

INCLUDE obj-1, t,obj-2 ...}

The 'INCLUDE' directive is used to specify the inclusion of one or

more relocatable objects into the current segment. The relocatable

objects may have been produced by the Ada compiler or may have been

produced by the Linker as a partial link. Any number of 'INCLUDE'

directives may be used to specify the objects to be included in a

segment.

The syntax of 'obj-n' is the KDBS object name optionally followed

by a parenthesized list of location counter names or numbers.

Within the list the location counters will be separated by commas.

Vol 6
A-1



2. Segment Identification Overlay Control

seg-name: SEGMENT [previous-seg-name]

The 'SEGMENT' directive is used to establish and identify a segment

into which relocatable objects are to be INCLUDED. If tue

directive has the name of a previously defined segment as an

operand, the origin of the newly established segment will be set to

the location of the operand segment, thus creating an overlay on

that previous segment.

3. Name Equates

name: EQUATE value

The 'EQUATE' directive is used to assign the specified value to a

name. The value may be a constant integer expression or may be

relative (+ or -) to some previously defined symbol.

For Example:

PRINTER: EQUATE 65776

ALPHA: EQUATE ALPHAEXPERIMENTAL

When a symbol is explicitly defined with the 'EQUATE' directive, it

will override the symbol definition in a library unit.

Vol 6
A-2

1%



4. Data Reserve

[name:] RESERVE value

The 'RESERVE' directive is used to reserve a specified number of

data storage units at the current segment location. The 'value'

operand must be an integer constant expression or have been

previously defined as an integer. If a name is used, it is made an

external symbol.

5. Heap Space Specification

[name:) HEAP value

The 'HEAP' directive is used to both allocate the heap space at a

particular location and to specify the size of the heap space. If

a name is specified, the heap space will be allocated at the

current location in the current segment. If no name is specified,

the heap space will be allocated by the Linker. If' a value of zero

is specified, the size and location of heap space will be

established at program invocation in a target dependent manner. If

no 'HEAP' directive is used, the default allocation and size of

heap space will be used - this will be target dependent. 'Value'

must be an integer expression.

6. Stack Space Specification

[name:) STACK value

The definition of the 'STACK' directive is analagous to the 'HEAP'

directive. A 'STACK' directive will cause the stack and heap space

to be separately controlled. In the absence of an explicit 'STACK'

directive, the stack and heap space will be shared.

Vol 6

A- 3



7. Entry Name

[exname:] ENTRY name

The 'ENTRY' directive is used to identify 'name' as the entry

point, of a main program, this is the location at which the program

will start when initiated, 'name' must be externally defined. If

'exname' is specified, exname is used as the externally defined

name in the output object.

8. Alignment

ALIGN type

The 'ALIGN' directive is used to perform allocation alignment on

the immediately following segment or object, 'type' will be

separately specified for each target.

9. Origin

ORIGIN value

The 'ORIGIN' directive is used to control segment allocation. The

value must be a integer constant expression or relative (+ or -) to

some previously defined symbol. The origin of the segment or

object which follows will be established at the specified value.

10. Establish a Limiting Address

name: LIMIT seg-1 {,seg-2 ...}

The 'LIMIT' directive is used to identify the end of a set of

segments and associates the specified name with the largest of the

location counter values of the set of segments specified as

Vol 6

A-4

" ll l l . .. I I I ~ i | I



operands. The name can be used as the operand of a 'SEGMENT'

directive to force a segment to be established at the end of the

largest of a set of overlay segments. Each seg-n operand must be
the name of a previously defined segment.

11. Library Update Name

LIBRARY lib-name

The 'LIBRARY' directive is used to specify which program library is

to be updated with the specifications of the linked object. The

default library is the current user working library.

12. Export an External Symbol

[exname:] EXPORT name

The 'EXPORT' directive is used to make an externally defined

symbol,'name', visible in the relocatable object output. If

'exname' is specified it is used as the external name. Note. Any

unreferenced external symbols always remain visible in the

relocatable object.

13. End of Commands

END

The 'END' directive terminates the set of Linker directives.

I

Vol 6
A-5

At



Example

The following diagram pictures a multi-level overlay structure for a

program. Small letters are used to represent included objects; the segments

are numbered.

KX
Y

1z
a
b

- d . 6k 7 I

6q 10

i Vol 6



The Link directives that produce this above program structures is shown

below.

ONE SLGMENT -- root

INCLUDE x,y,z

INCLUDE a,b

TWO SEGMENT -- subordinate segment

INCLUDE c,d

THREE SEGMENT

INCLUDE e

INCLUDE f

FOUR SEGMENT THREE - overlay segment

INCLUDE g,h

FIVE SEGMENT THREE -- another overlay segment

INCLUDE i

SIX SEGMENT TWO -- overlay at level 2

INCLUDE j,k

SEVEN SEGMENT TWO -- overlay segments 2 and 6

INCLUDE v

EIGHT SEGMENT TWO - overlay segments 2, 6 and 7

INCLUDE m,n

NINE SEGMENT - subordinate to eight

INCLUDE p,q

TEN SEGMENT NINE -- overlay-segment 9

INCLUDE r,st

HEAP 999 -- heap and stack

END

Vol 6
A-7

.1



A summary of the Linker directives is given below with examples, any

directive may be abbreviated.

A: SEGMENT --establish segment called "A"

INCLUDE X,Y --include Relocatable objects X, Y

ALFA: EQUATE BETA --equate ALFA to BETA

BUFF: RESERVE 500 --reserve data area and name it BUFF

ALIGN 2 --double word align the heap space below

HHH: HEAP 1500 -reserve heap space and name it HHH

ORIGIN 8192 --establish origin for stack

SSS: STACK 300 --reserve stack space and name it SSS

ENTRY MAIN --define entry point

LIBRARY /SITE-DEF --establish program library

EP13: LIMIT S1,S2,S3 --establish end of segments

EXPORT ADUMP --make symbol 'ADUMF1 visible in

relocatable --object

I.

Vol 6
A-8



APPENDIX B - PROGRAM INITIATOR

When a program is linked with the Load module option , the Linker inserts

an "Initiator Routine" and a Segment Load Table at the beginning of the root

segment of the program. When a program is invoked through the ACLI, the

root segment is loaded and control is passed to the Initiator Routine.

The Initiator first performs any initialization required to obtain code and

data work space for the program being executed. The Initiator uses the

segment load routine, SEGLOAD, to load and elaborate the segment containing

the main program entry point and all of its parent segments.

The Initiatow obtains the parameters specified at the program invocation

and, using the main program specifications contained in the

unit-specifications of the load object, verifies the parameters, establishes

any default values and calls the main program entry point as a procedure.

The Initiator routine thus acts as the parent procedure for the main

program. The Initiator routine also acts as the handler of last resort for

all exceptions and on option will cause a post mortem memory dump for an

unhandled exception.

When the main program exits, it will return to the Initiator routine. The

Initiator routine will wait for any dependent tasks of the process to

terminate and will then return to the ACLI passing back the return code

supplied by the main program.

An unhandled exception will cause the name of the exception to be treated as

the return code. In absence of a function main program or an unhandled

exception the value 'ok' will be returned.

Vol 6
B-i



APPENDIX C - LOADING

Segment Loading

The dynamic loading of overlay segments at execution time will be performed

through a segment load routine, SEGLOAD, in conjunction with the segment

load table. The segment load table is built by the linker and is contained

in the root segment of a load object.

The Linker replaces calls on external procedures in a subordinate overlay

segment with an indirect call through a load packet to the system routine

SEGLOAD: the load packet specifies the segment number and location of the

procedure being called.

If the segment being referenced is not loaded, it and any unloaded parent

segments in the program structure will be loaded and elaborated. Any

segments which were overlaid in this process will be marked in the segment

load table as unloaded and their load packets will be modified

appropriately. After the segment being referenced is loaded, SEG LOAD will

modify the packet to pass control to the specified procedure directly.

After loading and elaborating the required segments, SEG _LOAD will pass

control to the called procedure with the normal procedure linkage. SEGLOAD

is also used by the Initiator routine to load and elaborate the main program

segment and any of its parent segments at program initialization.

Segment Load Table

The segment load table is used for the dynamic loading of overlay segments

at execution time. The table describes the overlay structure of the program

and for each segment the following information is held:

1. the load address of each location counter

2. the disc location (or identity) of the object text of the segment

in the load object

Vol 6
C-1



3. the elaboration procedure address, this procedure will elaborate

all library units in the segment in the proper order

4. a pointer to its parent segment and a pointer to a chain of its

immediately subordinate segments.

A description of the segment load table record follows.

type SLTPTR;

type SEGMENTTABLEENTRY (NOLOCCOUNTERS : INTEGER) is

record

SEGMENTNO : INTEGER; -- internal ordinal number

SEGNAME : SEGMENTNAME;

SEGLOADED : BOOLEAN; -- true if segment is loaded

SEGRESIDENT : BOOLEAN; -- true if segment is resident

SEGLEVEL : INTEGER; -- internal level number 0,1 2

SEGPARENT : SLTPTR; - parent segment

SEGSUBCHAIN : SLTPTR; -- subordinate overlay chain

SEGSIBLINK : SLTPTR; - sibling segment

DISC-TEXT ADDR : DISCADDR; -- object text location

DISCDEBUGADDR : DISCADDR; - debug table location

LOADADDRARRAY : array (O..NOLOCCOUNTERS) of LOADADDR;

ELABPROCEDURE : EA PTR; -- elaboration prologue address

end record;

type SLTPTR is access SEGMENTTABLEENTRY;

A segment load control table is used with the segment load table to control

segment loading.

type SEGCONTROLTABLE is

record

MAINSEG : INTEGER; - segment number of main

- program

CURRENT.SEG : INTEGER; - lowest level loaded segment

Vol 6
C-2



ENTRY-POINT : EA.PTR; - entry point address

end record;

-- Segment Link Packet

type SEGLINKPACKET is

record

SLP IDA : EAPTR; -- indirect destination address

SLP CALLERSEG • INTEGER; -- caller Segment number

SLP-CALLEE-ADDR : EAPTR; - callee Address

SLP CALLEE SEG : INTEGER; - Callee Segment number

end record;

I

It

II

Vol 6
C-3

4'



Volume 7

COMPUTER PROGRAM4 DEVELOPMENT SPECIFICATION

(TYPE BS)

CO11PUTER PROGRAM CONFIGURATION ITEM

MAPSE Editor

Prepared for

Rome Air Development Center

Griff is Air Force Base, NY 13441

Contract No. F30602-8O-C-0292

Vol 7



1AbLE OF CONTENTSVo7

Page
Section 1 - Scope ..................................................... 1-1

1.*1 Identification ............................................... 1-1
1.2 Functional Summary ............ o............................ -

Section 2 - Applicable Documents.,.....o......o............o..............2-1

2.1 Program Definition Doculnent:b... ...... o..................... i-
2.L1 Inter Subsystem Specifications... .............. ......... ... 2-1
2.3 Military Specifications and Standards ....... o.............. 1
2.4 Miscellaneous Documents,............o..........................2-2

Section .,- Requirements ....................... o......o.....o...........3-1

3.1 Introduction .....................................oo.......3-1
5.1.1 General Description .... o..............o................. ...... 3-1
s.1.2 Peripheral Equipment Identification.-..........o......o..... 1
3.1.3 Interface Identification .... o..................................-1
3.1.4 Function Identification ....... o............................ 3-
3.2 Functional Description ....................................- 2
3.2.1 Equipment Description .........................
3.2.2 Computer Input/Output Utilization ................ o...........-2
3.2.3 Computer Interface Block Diagram ........ o.....................3-3
3.2.4 Program Interfaces ................... o............o......o.......-4
.3.2.5 Function Description.,....o......................3-id
3.3 Detailed Functional Requirements .............. ...............- 14
331 Editor Initialization.,........o................................-lb

3.s.2 Command Parser. .... o......o....o....o............... .............- 17
3.s.3 Expression Evaluation ....oo......................o........ ..
3.3.4 String Handling ..................... o....o................
3.s.5 Conmmand Executor ....................................3eeloo -22
3.3.6 Alter Command A .............. o......................o...........-e 4

3.3.,( Buffer command B ........ ......................... 3-30
3.3.8 Copy command C.........o......o........................ o........-)0
3.3.9 Delete command D ..........................-3
3.3. 10 Environment commandE .. .. .................................I&
3.3.11 Find coimandF........................33
3.3.12 Insert command I .................... o........................-5

3.3.13 KAPSE CommandiProcessor K..............38
3.3.14 Locate line command L.............. o..............o.............-39
3.3 .15 Move commani M........ . ............ 3-40

-j3.3.16 Number conaant N ... -............... o........o.................-42
3.3.17 Print Command Po...............ooo...eo..s.......3-4 )
3.3.18 Introduction -Quit commnand Q...........................3-4j
3.3.o19~ Read command R ................. . . ........... 3-45

3.3.20 Substitute command S. ......... . . . .- 41i

3.3s.21 Write instruction W....... .. .. ....... ......... 3-46

Vol 7



Page
3.. .22 Execute macro wommand X .................................... 4
3.3 .23, Zone Mark Command Z . ................. .. ..... .. . . ... i-!SO
3.4 Adaptation ......... %....................................... %
,.4. 1 General Environment ...........................................- 52
3.4.2 System Parameters .............................................- 52
3.4.3 System Capacities .......................................... 35
3.5 Capacity.... o........................................ o.........-!52

Section 4 - Quality Assurance Provisions .............................. 4-1

4.1 Introduction ................................................. 4-1
4.*1.*1 Subprogram Testing ..................... o......................4-2
4.1.2 Program tCPCI) Testing..... .......... o.................o.... 4r
4.1.3 System Integration Testing ...................... ............. 4-,
4.2 Test Requirements ......................... o...........oo.......4-3
4.2.1 Inspection ...................................... o...... 0......4.-6
4.2.L, Review of Test Data ........................... o...............4--b
4.,, Acceptance Testing....... ........................ o............4-6

Section 5 - Documentation ......... o.....................o...............5-1

5.1 General ........................ o.............................5-1
5.1.1 Computer Program Development Specification ................... 5-1
5.1.2 Computer Program Product Specification ....................... 5-1
5.1.3 Computer ProgramnListings ................... o.................5-L
5.1.4 Maintenance Manual ...... o.....................................5-2
5.1.5 Users Manual ................................................. 5-2
5.1.b Rehostability Manual...... ................................ 5-
5.1.7 MAPSE Tools Reference Handbook ............................... 5-3

Appendix A -Sample Edit Commands ...................................... A-1

Vol 7
iv



SECTION I - SCOPE

1.1 IDENTIFICATION

This specification establishes the performance, design, development, and

test requirements for the MAPSE Tool Set member, the Text Editor (EDIT).

1.2 FUNCTIONAL SUMMARY

The purpose of this specification is to define the Text Editor being

designed as part of the Ada Integrated Environment contract for RADC. This

document will serve to communicate the functional design decisions that have

been adopted and to provide a basis for the continuing design effort.

The text Editor provides facilities for the creation and modification of

text objects in the KAPSE Data Base (KDB). The capabilities provided

include line, string and screen oriented text modification commands, input

and output commands, macros and the ability to execute APSE command language

interpreter (ACLI) commands.

The Editor has interfaces with the KAPSE Data Base System (KDBS), the CLI

and the KAPSE Framework (KFW). The Editor has an indirect interface with

all programs and tools which use text objects from the KDB, since the Editor

is the primary means of creating and modifying these objects.

Vol 7
I~~-I 2/.

" ........ ... L " ".



SECTION 2 - APPLICABLE DOCUMENTS

The following documents form a part of this specification to the extent

specified herein.

2.1 PROGRAM DEFINITION DOCUMENTS

1. Reference Manual for the Ada Programming Language, July 1980

2. Requirements for Ada Programming Support Environment, "STONEMAN",

February. 1980

3. Statement of Work, Contract No. F30602-80-C-0292, 80 Mar 26

2.2 INTER SUBSYSTEM SPECIFICATIONS

4. System Specification for the Ada Integrated Environment.

5. Volume 1, Computer Program Development Specification for CPCI KAPSE

Framework.

6. Volume 2, Computer Program Development Specification for CPCI KAPSE Data

Base.

7. Volume 3, Computer Program Development Specification for CPCI MAPSE

Command Language Interpreter.

8. Volume 4, Computer Program Development Specification for CPCI MAPSE

Configuration Management System.

9. Volume 5, Computer Program Development Specification for CPCI MAPSE

Compiler.

10. Volume 6, Computer Program Development Specification for CPCI MAPSE

Linker.

11. Volume 8. Computer Program Development Specification for CPCI MAPSE

Debugger.

2.3 MILITARY SPECIFICATIONS AND STANDARDS

13. MIL-STD-483, Configuration Management Practices for Systems, Equipment,

Munitions, and Computer Programs, 1 June 1971.

14. MIL-STD-490, Specification Practices, 30 October 1968.

Vol 7

2-1 37/-



2.4 MISCELLANEOUS DOCUMENTS

15. SOS Reference Manual

16. TECO Reference Manual (in DECSYSTEM1O User's Manual)

17. TECO (in Multics Programmer's Manual)

18. UNIX Editor

19. WYLBUR Reference Manual

20. Edm (in Multics Programmer's Manual)

21. Wordatar User's Guide, MicroPro International Corp.

22. UCSD Pascal System Reference Manual

23. CSTS GPS Reference, Vol. 1: General

24. GCOS

25. Inforex Text Editor Reference Manual.

II

Vol 7
2-2



SECTION 3 - REQUIREMENTS

3.1 INTRODUCTION

This section provides the general description, identifies the external and

internal interfaces, gives the functional requirements and presents the

characteristics of the Configuration Item identified as the Text Editor

(hereafter referred to simply as the Editor).

3.1.1 General Description

The purpose of the Editor is to allow the creation and modi'ication of .ext

objects which can be used as inputs to the APSE Command Lan uage

Interpreter, the Ada compiler, other tools and user programs. The Editor

will be reentrant and sharable.

3.1.2 Peripheral Equipment Identification

The Editor is to operate on the IBM VM/370 and on the Interdata 8/32 under

the OS/32 Operating System. The Editor will accept commands and text

objects and produce listings and text objects in a device independent

fashion.

The Editor will be sensitive to some of the characteristics of the command

input and listing output devices. However, whether the input is echoed as

full or half duplex and whether individual characters are obtainable will

affect the behavior of the Editor. In addition, the Editor must know if it

is being invoked interactively or through a command file.

The design will permit the editing of any size KDB text file in at most 32K

bytes of memory.

3.1.3 Interface Identification

The text Editor will operate as an executable program under the MAPSE. It

may be Invoked by the ACLI in response to a user command, or by a call from

an APSE tool or program.

The Editor will interface with the KDBS to create and access text objects,

and with the ACLI to allow ACLI commands to be executed. The Editor will

interface with the Configuration Manager for version control. There will be

an interface to the user, Interactively or through a command file.

Vol 7
3-1



3.1.4 Function Identification

The major functions of the Editor are:

1. Editor initialization

2. Command executor

3. Command parser

4. String handler

5. Expression evaluator

6. Environment maintainer

7. Intra-line Editor

3.2 FUNCTIONAL DESCRIPTION

The purpose of this section is to provide a detailed description of the

major functions of the Editor and its relationship to other programs in the

APSE.

3.2.1 Equipment Description

The Editor has no host or target machine dependencies.

3.2.2 Computer Input/Output Utilization

Inasmuch as the APSE (and hence the Editor) will be run on large host

computers, the possibility of editing from dial-up terminals cannot be

ignored. Thus, while the Editor will support screen-oriented editing, it

cannot assume that all terminals which will be used will run at high speeds,

and must support editing from slower terminals also.

The Editor will be able to operate in both half-duplex and full-duplex

modes, but the interfaces for certain operations, notably intra-line

editing, will not be as convenient in half-duplex mode.

File Interfaces

std-in - is the file from which the Editor commands are obtained

std out - is the file to which listing and verification is done

std err - is the file to which diagnostic messages are written

EDIT START UP - is the file which contains the Editor commands which

are read by the Editor initializer

Vol 7
3-2



3.2.3 Computer Interface Block Diagr-am

See Figure 3-1.

r or

Ic It

I

Vol 7
3-3

r



3.2.4 Program Interfaces

3.2.4.1 KAPSE Data Base

1. Read commands

2. Create text object

3. Open text object

4. Read a block of a text object

5. Write a block of a text object

6. The Editor will format blocks, so it will need to be aware of

the block format used by the KDB

7. Obtain user commands from a command file or terminal

3.2.4.2 KAPSE Framework (KFW)

1. Query whether input is half-duplex or full-duplex

2. Turn off echoing, if full-duplex

3. Query whether input is obtainable character by character

4. Query whether the Editor was invoked interactively

5. Be informed if the user has entered an attention to interrupt

the execution of a command

3.2.4.3 APSE Command Language Interpreter

1. Execute command

3.2.4.4 User

1. Commands.

3.2.4.5 Impositions on the other CPCIs

These are the interfaces which may impose additional requirements on other

CPCIs.

KAPSE Data Base

Vol 7
3-4



1. Read a block containing a particular key.

2. Read the block containing the nth record before or after a given

record.

3. It must be possible to efficiently access blocks in text files in a

random order.

4. A system convention for entering upper/lower-case characters on

single case terminals is assumned.

5. A system convention for tabbing is assumed.

6. In addition, the following special characters are required:

carriage return, line feed, back space.

3.2.4.6 Editor Syntax Summary

The Editor may be operated in either interactive or batch mode. While the

Editor commands are oriented toward interactive editing, all of the commands

are available in either mode. The syntax of Editor commands is described

below. The semantics of the commands are described in section 3.3.

Lower case names represent non-terminal symbols. Upper case letters and

special characters (with the exception of {, ), } , and /- and blank) are

terminal symbols. A syntactic entity enclosed in braces (H) may occur 0 or

more times. An entity enclosed in square brackets is optional.

Alternatives are given on separate lines with one alternative left-justified

under the other. Continuation lines are set back from the alternatives.

The symbol +/- stands for either a plus or minus sign.

In the syntax descriptions shown below the characters / and % are used for

the string terminator and escape character, respectively. It will be

possible for the user to define which characters are used. However, it was

felt that the syntax is clearer when the default characters are used rather

than symbols such as <string-terminator> and <escape-character>.

Vol 7
3-5

_________________________7 1______



Commands

Name Syntax

Alter A rangelist

Buffer B (single-character>

copy [cJ C [rangelist) RC pos)

Delete 1c) D~ [rangelist)

Environment E <env-code> value

Find (a] F string (rangelist]

Insert [c) I string

KAPSE command K string

Locate line L (line-position)

Move (C) M4 (rangelist) [@ pos)

Number N range (,number-1J (,ntanber-2]

Print Eo) P (range list]

Q Q [file]

Read R file [rangelist](CposJ

Substitute 10 S string string [rangelist]

Vol 7

3-6-



V V verify

Write W file [rangelist]

eXecute command [integer] X alphanumeric ( string I

macro

Zone Z zone definition

Note: Many of the command parameters are optional. The prose descriptions

of the effects of the commands specify which these are.

Syntactic Components

String {characters'bufferocontext-string]/

Context-string [ib] char-position .. char-position

Char-position %A string

%B string

%# integer

line-position (# integer]

File APSE-file-name /

Buffer I char any single character from an

implementation defined

character set including at

least

the Ada character set

Position line-key (line-position)

line-key 0 integer (char-position)

SA string (char-position

SB string (char-position

Vol 7
3-7

• .. .. .L /



Range [ib] line-range

Db] char-range

Line-range line-position E.. line-position]

line-position $ integer

Char-range char-position .. char-position

line-position # char-position

Note: In a string "characters" may be any sequence of characters

except the string terminator and the escape character. Escape

sequences are listed below.

Integers may be replaced by integer expressions enclosed in

parentheses.

Special Characters. Special characters may be specified by the user.

/ String terminator (default

Z Escape character (default)

$ Line count indicator

# Character number indicator

@ workbuffer position indicator

Range indicator

I Buffer indicator

Shorthand Notations (in this section braces are not metasymbols)

< Beginning of file

> End of file

Start of cursor (position)

End of cursor (position)

({ Cursor (range)

Vol 7
3-8

/



Escape Sequences

SA After

SB Before

%Hdd Hexadecimal character representation

%Oddd Octal character representation

5% % <escape>

5/ / <string-terminator>

%!b String contained in Buffer 'b'

'b' is any single character of an implementation

defined character set which will include at least

the ADA character set.

Any number of any 
character

including none

%? Single wild card character

%_ Most recent deleted or found string

%R Read string from std_in

%W Write string to std out

S. Most recent substituted or inserted string

SL Current line number

%(carriage-return> Line continuation

Vol 7
3-9



Expressions

The Editor provides integer and boolean expressions.

Arithmetic operators

+ Addition

- Subtraction, negation

* Multiplication

/ Division

Boolean operators

& And

lOr

Not (prefix)

Relational operators

>Greater than

-Equal

(Less than

>2 Greater than or equal to

(z Less than or equal to

/Z Not equal

Vol 7
3-10



Command Groupings

Sequential command (; command)

Repetition [count] command

Loop [count] ( command-list )

Case [ condition command-list ( command-list }

command-list ]

Note: Command Termination

A semi-colon may be used to terminate any command. Semi-colons are

only necessary to separate two commands on a line if the first

command has an optional trailing parameter omitted and the second

command has an optional leading parameter (a repetition count)

omitted.

Carriage Return

Within a string, the carriage return is a part of the string. At the

Editor command level, a carriage return ends the command.

Line Continuation

The sequence "%<carriage-return>" can be used to continue a line, the

sequence would neither end a command nor be made part of a string.

4

Vol 743-11



3.2.14.7 Screen Oriented Capabilities
Although all editing functions are supported for both line and screen
devices, some functions. such as cursor positioning, would be of little
value on hard copy terminals. The following capatilities are oriented to
high speed screen devices.

1. Screen Size The screen size is specified as part of the user

environment.

2. Positioning Cursor positioning is supported, the user may

specify the cursor positioning characters.

3. Paging Paging is supported with the P command. On a

line oriented device P displays the next line,

on a screen device P displays the next page.

4. Exchanging The exchange command will allow in-place text
modification.

5. Highlighting Text highlighting through cursor positioning is

supported. The highlighted text may be
referenced with the Copy, Move, and Delete

commands.

3.2.5 Function Description

The purpose of the Editor is to allow text objects to be created and
modified. To this end, a number of commands are provided. These include:

inserting, deleting, finding and replacing, copying and moving strings;
inserting, deleting, copying and moving lines; cursor positioning; printing;

renumbering; intraline editing (alter); reading and writing text objects;
and defining and executing command procedures.

In addition, there are facilities for computing the results of expressions,
and for executing commands conditionally and repetitively. It is also
possible to execute ACLI conmmands from the Editor.

The main functions of the Editor are: initialization, command parsing,
expression evaluation, string handling, command execution, intra-line

editing, and environment maintenance.

Vol 7
3-12



3.2.5.1 Initialization

The initialization function sets up data which must be Initial ized, checks

the arguments with which the Editor was invoked, establishes defaults and

reads the user-defined Editor initialization file.

3.2.5.2 Command Parsing

The command parsing function is the main controller in the Editor. It is

responsible for parsing commands and for calling the expression evaluator

and command executor, intra-line Editor and environment maintainer,

according to the type of command entered.

3.2.5.3 Expression Evaluation

The expression evaluator computes values for the arithmetic, boolean and

relational expressions which appear in commands.

The string handling function is responsible for string matching and handling

the special escape sequences which appear in strings.

3.2.5.4~ Command Execution

Command execution is responsible for performing the actions specified by the

commands. For clarity, each command is described In a separate subsection

in section 3.3. The Editor commands included in command execution are:

copy, delete, find, insert, execute ACLI command, print, move, number,

procedure definition, quit, read. substitute, write and execute macro.

3.2.5.5 Intra-line Editing

Intra-line editing implements the alter command. It has the responsibility

for parsing the special alter commands, and for modifying the text according

to those instructions.

3.2.5.6 Environment Maintenance

The environment maintainer provides facilities for changing and querying the

environment.

Vol 7
*1 3-13



3.3 DETAILED FUNCTIONAL REQUIREMENTS

This section contains detailed descriptions for the major functions of the

text Editor. In addition, the effect of each Editor command is explained.

Examples of sample edit commands are presented in Attachment A.

There are a number of Editor requirements which relate to the Editor as a

whole, rather than to a particular function. These are described here.

The Editor will not modify any input object unless it is given an explicit

instruction to do so (and it is permitted to do so by the configuration

manager).

The user will be protected against the accidental loss of data in the work

buffer insofar as is possible. This includes such measures as requesting

confirmation for massive deletions.

,here are a number of general concepts which relate to the Editor as a whole

which must be detailed for the descriptions of the functions to be

coherent.Positions

The Editor will implement both character and line oriented commands.

Positions may refer to characters or lines. A position which specifies a

character position will be referred to as a "character-position".

Similarly, a position which refers to a line will be called a

"line-position".

The syntax for a position is:

line-key

or
line-key # integer

or

SA string

or

SB string

The line-key may be either a line-key from the work buffer, or one of the

cursor abbreviations, [ or 1.

Vol 7
3-14

I I I [ I V



The cursor symbols give a line or character position. "( f 1" converts a

line cursor to a character cursor.

The third and fourth forms shown above yield the position immediately after

and before the next occurrence of the sting.

A range consists of the characters or lines between two positions. A range

which is specified by two line pointers is a "line-range". Any other range

(i.e., one which has at least one character position is a

"character-range". The cursor sumbol {1 may be used to specify a range.

The type of range is the same as the cursor type.

The syntax for ranges is:

[#b] position [ .. position I

or

[#b3 line-position [ .. line position ] @

char-position .. char-position

The first form gives a sequence of characters from the first position to the

second. The second form gives a "rectangle" of characters between the two

line-positions vertically, and the two character positions horizontally. If

a buffer specification precedes the range, the range is within the specified

buffer.

A carriage return is assumed to exist as the last character of every line.

The line key is not considered part of the line. Thus, advancing two

characters from the last character on one line will skip over the carriage

return to the first character on the next line.

As part of its environment the Editor will maintain a cursor, which, in some

sense, tells "where the Editor is". The normal application for this cursor

is to provide a context for an operation if one is not specified in the

command. For example, the insert instruction will insert text after the

position specified by the cursor if a position is not given explicitly in

the command.

Vol 7
3-15

MN

. _:2 % ,' -,- .. . .. l ,- - ., -:



The cursor is a "wide" one. It may po int to a character, a l ine or a range

of characters or lines. The cursor may be considered to be a range. Thus.

it makes sense to talk about the beginning of the cursor and the end of a

cursor. These are Used in the descriptions of the Editor functions as
shorthand notations for "the Position of the start of the cursor" and the

"position of the end of the cursor."

Another concept is that of a "buffer." Buffers may be Used to hold values,

text, strings and Macros. They may be read, written or edited. Buffers may

be very small (a null string) or very large (an entire file). The work

buffer is, in fact, a distinguished buffer. At any given time only one

buffer (the work buffer) may be edited, although any of the existing buffers

may be read or written. For each buffer containing text, the size,

distinguished Zone, and cursor is maintained. The size of an empty buffer

is zero. For each buffer containing a value, the value is maintained.

An additional concept is that of a macro of text Editor commands. The

Editor will permit the User to define macros, to invoke them, and to pass

them parameters.

Line numbers are optional. If line numbers are not used line number n will

refer to the nth line in the file.

3.3.1 Editor Initialization

Initialization performs the housekeeping necessary to begin editing and

reads the user-defined Editor initialization file.

3.3.1.1 Inputs

Initialization object a KDB text object in the working

directory with the name EDITSTARTUP.

This file contains Editor commands

(see 3.2.4).

Parameter list - the parameter list passed to the Editor

by the CLI.

Vol 7
3-16



3.3.1.2 Processing

The initialization function is responsible for performing any housekeeping

necessary to begin the execution of the Editor. This includes initializing
tables, establishing defaults, and processing the parameter list which is

passed to the Editor upon its invocation by the CLI.

The initialization function is also charged with ascertaining whether an

EDIT__STARTUP exists, and if so, opening the object and performing the

initialization directives.

The work buffer is initialized (at least in a logical sense) to the contents

of the file(s) specified when the Editor was invoked.

3.3.1.3 Outputs

Editor internal tables - initialized.

3.3.1.14 Special Requirements

The object name EDITSTART_-UP should not be used anywhere in the APSE for

anything but Editor initialization files.

3.3.2 Command Parser

The command parser reads command lines, parses them into tokens, and

diagnoses syntax errors.

3.3.2.1 Inputs

EDITSTARTUP - If an initialization file is present

commands are read from it, prior to reading

3td-in.

std-in - The primary inputs to the command parser are Editor

commands which are obtained as input from the

user (directly or from a coummand fi2e) or from

one of the Editor's buffers. The syntax for the

input is given In section 3.2.4.

The syntax of each command received is checked by

the parser to insure that it conforms With the

description above.

Vol 7
3-17--7



3.3.2.2 Processing

When the Editor is first invoked, the command parser requests the Editor

initialization function to ready the Editor for execution.

The command parser obtains commands, either a line at a time or a character

at a time, depending on the interface to the user and the limitations of the

host operating system. Commands are obtained either from a text object

(such as the initialization file), as the result of input from the user, or

from one of the Editors buffers. Obtaining a command from a buffer may or

may not involve input.

The command is checked for syntactical correctness and broken into tokens.

Any expressions present in the command are evaluated by the expression

evaluation function. Defaults are supplied where necessary and the values

associated with shorthand operators are provided. The tokens are assembled

into a canonical form and are passed to the appropriate Editor routine.

Syntax Checking

Each command is checked to insure that it is syntactically correct with

respect to the Editor command language described in section 3.2.4. If an

error is detected, a diagnostic is issued to the error output file, nested

procedures and their parameters are unstacked and the command line at the

top level is flushed.

The parser will perform a limited amount of semantic checking. This

includes verifying that the lower limit of a range does, in fact, precede

the upper limit, and that line keys and character positions are non-negative.

3.3.2.3 Outputs

std err - diagnostics, if any.

Canonical command the internal representation for the

Editor command.

3-18

- * ' , , - . . .. . .. . . . . .. . .



3.3.3 Expression Evaluation

The expression evaluator is responsible for computing the results for the

expressions which appear in commands.

3.3.3.1 Inputs

Expression - from command line.

3.3.3.2 Processing

The expression evaluator parses and evaluates the expressions which occur in

Editor commands. The priority of operators is as follows:

, / Highest

., _, ' (unary)

- (binary)

&. I Lowest

The arithmetic operators (. -, *. and /) take integer operands and yield

integer results. The boolean operators (&, i and ') take boolean operands

and yield boolean results. The relational operators (<. =, >. >z, <:, and

/-) take boolean, integer or string operands and yield boolean results. If

the operands of a relational are mixed, booleans are converted to integers,

and integers to strings as necessary.

These operators could be overloaded with other types in an APSE Editor, but

only the operations described above will be supported in the MAPSE Editor.

3.3.3.3 Outputs

Expression result - integer.

3.3.4 String Handling

The string handling function is responsible for performing string matching

and processing the escape sequences which may appear in strings.

3.3.4.1 Inputs

One or more strings.

Vol 7
3-19



3.3.4.2 Processing

The string handler's primary responsibilities are string matching and

processing the escape seuences which appear in strings.

String matching may be performed in one of two modes: character and token.

Character mode matches strings character for character, the only exceptions

being the escape sequences listed below.

Token mode treats the string as a sequence of Ada tokens. For a match to be

successful, there must be the same sequence of tokens in the workfile.

Note, in particular, that a token whose name appears in another token will

not match that token. For example. "A" will not match the "A" in "AB" in

token mode. White space (blanks, tabs, carriage returns) is insignificant

except to delimit tokens. Thus, "A B" matches "A B", but not "AB".

However, "A (" matches "A (", and also "A(".

There will be an option to permit the matching of strings, regardless of

differences in case. This will be controlled by a flag in the environment.

The special character constructs (<escape><character>) are described below.

%A Converts a string to a position. The meaning of SAstring is the

character position immediately after the string. This sequence may only

precede a string; it may never appear in the middle of one.

%B Converts a string to a position. The meaning of %Bstring is the

character position immediately before the string. This sequence may

only precede a string; it may never appear in the middle of one.

%1b Buffer b. When this sequence occurs in a string, the effect is as If

the contents of buffer b had been written in the string in place of the

%1b.

%Hdd Hexadecimal character representation. When this sequence occurs in

a string, the effect is to insert the character whose hexadecimal

representation is dd into the string in place of the Hdd. Note

that dd represents two hexadecimal digits.

Vol 7
3-20



I
Most recent found string. The effect of this construct appearing In a

string represents the most recently found or deleted string.

%+ Most recent substituted string. The effect of this construct appearing

in a string represents the most recently substituted or inserted string.

SR Read string from std in. The syntax of this read command is

"SRstring". This construct causes "string" to be written to stdout, it

is then replaced by the string read from std in.

SW Write string to std-out. The syntax of this write command is

"SWstring". This construct causes the "string" to be written to std out.

SOddd Octal character representation. When this sequence occurs in a

string, the effect is to insert the character whose octal

representation is ddd into the string in place of the Oddd. Note

that ddd represents three octal digits.

%P character-position .. character-position /

This construct allows a string to be represented as a range. The string

consists of all of the characters between and including the two

positions. Note that this construct may only appear in a search string

and not in a replacement string.

SC Character. Gives character-for-character matching when token mode is

the default.

ST Token. Marks the string as one which is to be matched in terms of

tokens. This construct may only appear in a search string.

%? Wildcard. Matches any character. This construct may only appear in a

search string.

5U Inserts the escape character in the string.

%/ /. Inserts the string terminator character in the string.

V Or. This construct allows a search string to match either the string

which precedes it, or the string which follows. For example, A B8/

would match either an "A " or a "B". This construct may only appear in

search string.

Vol 7
3-21



%In Parameter number r. Inserts the value of the nth parameter in the

string. This construct is only valid during the execution of a macro

which has at least n parameters. Parameter number 0 (10) gives the

number of parameters passed.

%* *. Indefinite wildcard. This construct matches any number of any

character, including none. This construct may only appear in a search

string.

%L L. Current line number. This construct may only appear in an

expression.

3.3.5 Command Executor

The command executor is the controlling program for the Editor. It calls

the Editor initializer at the start of execution, and repeatedly invokes the

command parsing and execution functions to perform the operations specified

in the commands which are input to the Editor.

The functional requirements for the various Editor commands are described in

separate subsections for clarity. They could, however, be though of as part

of the command executor.

3.3.5.1 Inputs

Command - The command is In a canonicalized form (see

3.3.1.3) with expressions having been computed

and defaults having been supplied. The command

is passed in by the command parser as a series

of tokens.

Text objects - These are the text objects which were

specified in the invocation of the Editor

(either in an APSE command line or in a

call on the Editor by some other tool or

user program).

Buffers -Buffers contain~ values either as the result of

the Editor initialization process or as the

result of the execution of Editor commiands.

Vol 7
3-22



3.3.5.2 Processing

The executor is responsible for executing statements sequentially,

conditionally and repetitively. It also must determine which function is

required by each command.

Upon completion of a command, the next command will be read, unless the last

statement was in a conditional or a loop.

For the execution of a group of commands which has a repetition count or

group range, tne commands are executed in order, until a command fails, the

loop is exited, or until the termination criterion for the repeat count or
the range is satisfied. The criterion for a repeat count of n is that all

statements have been executed n times. The criterion for a range is that

the cursor returned by any of the commands falls outside of the range. If

either the repetition or th'e range is not specified, the termination

criterion associated with that specification does not apply.

For the execution of a conditional command, the condition is first

evaluated. If the value of the condition is n. the nth alternative

(starting from 1) is selected. Note that boolean expressions return the

value 0 for false and 1 for true. An alternative preceded by a double bar

(11) is the else alternative. The else alternative is selected if the value

of the condition is less than or equal to zero, or greater than or equal to

the number of alternatives (i.e.. if there is no alternative, not counting

the else, which corresponds to the value of the conditional).

When an alternative is selected, the commands in It are executed. When the

bar OD at the end of the alternative is encountered, the remaining commands

in the conditional group are skipped and the next command executed is the

one which follows the conditional.

3.3.5.3 Outputs

Buffers - The contents of various buffers may be changed,

depending on the command. The work buffer, in

particular, is changed by a nuber of commands.

Vol 7
3-23

6- b.



Environment - Various environmental parameters may be

changed.

3.3.6 Alter Command A

The alter command allows intra-line editing.

3.3.6.1 Inputs

Command line - A range list

std in - intra-line editing commands (see section 3.2.4).

3.3.6.2 Processing

The intra-line Editor allows changes to be made to text via a set of special

alter commands. It behaves differently, depending on whether the interface

between the user and the Editor is half-duplex or full-duplex. For this

reason, this description is divided into two subsections.

Full Duplex

When the intra-line Editor is invoked, it positions the cursor to the first

character position in the rangelist. The user may then issue any of the

commands described below. Note that none of the intra-line commands are

echoed. The only printing done is that described below.

Pointer moving commands

The pointer is never allowed to move outside the rangelist. If the pointer

is at the right-hand end of a line in the rangelist, and an attempt is made

to move right, the cursor moves to the leftmost character of the next line

in the rangelist. An attempt to move right from the last character in the

rangellst results In a wraparound to the first character in the rangelist.

Moving left is the exact inverse of moving right.

A repeat count may be specified before any command in the list below. The

effect of a repeat count of n (n>O) is the execute the command which

follows, n times.

Vol 7 /7j2
3-24



Moving down is analogous to moving right. Moving down causes the pointer to

point to the character in the same position, but on the next line in the

rangelist which has character which is in the same position but also In the

rangelist. Note that the next line in the rangelist is not necessarily the

next line In the file. If there is no line later in the rangelist which

satisfies the above conditions, the pointer wraps around to the next

character position and the top of the rangelist. If there is no character

in the rangelist to the right or below the original pointer position, the

pointer wraps around to the first position in the rangelist. Moving up is

the inverse of moving down.

space Move one space to the right. Echo the character whose position was

Just left. If wraparound occurs, echo the key of the new line and

all of the characters to the left of the current position.

backspace Move one space to the left. If wraparound occurs, echo the

key of the new line and all of the characters to the left of

the current position.

line feed Move down one line. Echo the remainder of the old line and

the key and all of the characters to the left of the new

pointer position of the new line.

caret Move up one line. Echo the remainder of the old line and the key

and all of the characters to the left of the new pointer position

of the new line.

return Move to the first character in the next line in the rangelist.

Echo the remainder of the old line and the key and all of the
characters to the left of the new pointer position on the new line.

Operators

B Bye. Leave intra-line mode. Changes made to the current line are

retained.

D Delete. Delete the character pointed at. Deleted characters are echoed

enclosed in square brackets.

Vol 7
3-25



E Echo. Echo the remainder of the line, skip to a new line and echo the

line key and the characters to the left of the pointer. The pointer

position is unchanged.

F string Find. Find the next occurrence of the string in the rangelist. If

the string is found, on the same line, echo the characters from the

old pointer position to, but not including the new pointer

position. If the string is found on a different line, echo the

remainder of the old line, the key of the new line and all of the

characters on the new line to the left of the new pointer position.

I string Insert. Insert the string characters to the left of the pointer.

Echo the string characters but not the I and the string

terminator. The pointer still points to the same character, but

that character is now in a new position.

L Lower case. Change the pointed-to-character to lower case, if possible,

echo the character, and move one position to the right.

Q Quit. Restore the pointed to line to its form before the current set of

changes were made, and exit intra-line mode. Note that if a line is

altered and the pointer is moved to another line, the changes in the

first line are made permanent, and are unaffected by a Q. Only those

changes made since the pointer was moved to the line are undone.

R string Replace. Replace the characters starting at the pointed to

character with the characters in the string on a I for 1 basis,

until all of the characters in the string are used up. Echo only

the replacement characters and any unchanged characters to the left

of the replacement characters if changes are made to more than one

line.

S Slide. Slide the token pointed at to the right by deleting a blank to

its right and inserting one to its left. If there is another token to

the right, the command is ignored and a bell is transmitted to std out.

U Upper case. Change the pointed at character to upper case, if

possible. Echo the changed character and move one position to the right.

L/f
Vol 7
3-26

(NOW.

'4L



X Exchange characters. Switch the positions of the pointed to character

and the character to its right. Move right one position and echo one

character.

Z string Zap. Causes any characters that the pointer passes over to be

deleted. Only cursor movement characters are allowed in the string.

Half Duplex, or Line at a Time

If the interface between the user and the Editor is half-duplex, or

characters are ttansmitted a line at a time, intra-line editing is different

from that described above. The concept of a pointer is different, and the

effect of some of the commands is different. Commands are only executed

after an entire line has been received.

Initially, t6 first line in the rangelist is printed. It is then possible

for the user to enter intra-line commands.

Pointer moving commands

The pointer is never allowed to move outside the rangelist. If the pointer

is at the last line in the rangelist and an attempt is made to move down,

tbi pointer wraps around to the first line in the list.

Command Action

caret Move up one line. Print the previous line in the rangelist. Print

spaces so that the next character typed will line up under the

first character in the line which is in the rangelist.

return Perform the actions specified by the commands on the line. If the

last character on the line was a continuation character (-), print

the modified version of the same line. Otherwise, move down one

line and print the next line in the rangelist. Print slaces so

that the next character typed will line up under the first

character in the line which is in the rangelist.

Operators

Operators never take effect until the return is entered to terminate the

line. In the descriptions below, reference is often made to "the character

Vol 7
3-27 -,_

I-H



directly above" some operator. This refers to the character which is

printed in the same column as the operator, but on the previous line.

Operators only take effect if they are applied to characters which are in

the rangelist. (Characters which are outside the column range but in the

same line are not affected).

Operator Action

space Serves only to position the other operators and operands.

B Bye. Leave intra-line mode. Changes made to the current line are

retained.

D Delete. Delete the character immediately over the D.

I string Insert. Insert the characters in the string before the character

directly over the I.

L Lower case. Change the character immediately over the L to lower case,

if possible.

Q Quit. Ignore the changes specified on this intra-line command line and

leave intra-line mode.

R string Replace. Replace the characters starting at the character directly

above the R with the characters in the string on a 1 for 1 basis,

until all of the characters in the string are used up.

U Upper case. Change the character directly above the U to upper case, If

possible.

X Exchange characters. Switch the positions of the character directly

above the X with the character on its right.

Continue. When this character appears as the last character on the

intra-line command line, It indicates that the carriage return which

follows It is not to cause the pointer to move down a line.

Vol 7
3-28

' "I.. = ... ..... .. :T-- : -. T :.. -:



3.3.6.3 Outputs

stdout - Echoing and printing as described above.

Work file - Changes to text in the rangelist as described

above.

3.3.6.4 Special Requirements

In order for the full-duplex, character-at-a-time intra-line editing to be

effective, it must be possible for characters to be obtained from the user

one-at-a-time. In addition, it must be possible for the Editor to suppress

the echoing.

While these commands are available for non-interactive use, their

effectiveness in batch is likely to be greatly diminished, since they owe a

good deal of their usefulness to the alignment between the printed

representation of the text line and the cursor or print element on a

terminal.
t

Vol 7

3-29

.- -



3.3.7 Buffer command B

The Buffer command causes the specified buffer to become the work buffer.

3.3.7.1 Inputs

Command line - B alphanumeric

Buffer - The buffer speciTied by the alphanumeric character

3.3.7.2 Processing

The Buffer command makes the specified buffer the new work buffer. The old

work buffer is not lost, but is retained as an ordinary buffer. It may be

made the current work buffer again through the use of another B command.

The work buffer which is in use before the first B command is Buffer <blank>.

If the buffer has not been initialized, an empty work buffer is provided.

Verification: If the cursor associated with the buffer is defined, the line

containing it is printed.

3.3.7.3 Outputs

std out - verification as described above

Cursor - Has the same value as the cursor had the last time the buffer

was the work buffer. If the buffer was not previously a work

buffer, the cursor points to the beginning of a null work

buffer.

3.3.8 Copy command C

The Copy command is used to move data to a new location in the work buffer

without deleting the original.

3.3.8.1 Inputs

Command line - [count] C [rangelist][@position]

workbuffer - the current work buffer

Vol 7

3-30



3.3.8.2 Processing

The copy command causes the text specified in the rangelist to be copied to

the current or specified position. If the position is a line position, the

first line moved becomes the next line after that line. If the position is

a character position, the first character of the moved text follows

immediately after that position.

If any range specified in the rangelist overlaps the destination, the move

is suppressed and a diagnostic is issued to std err.

If new lines are created, either because line range(s) are specified, or

because a character range includes an end of line, the first new line will

be at (current-key + current-increment), with each subsequent copied line

having a key current-increment higher than the previous. If this would

cause line(s) to be out of order, the copy is suppressed and a diagnostic is

issued.

The text specified in the rangel1st remains unchanged.

Repeat count: If the repeat count is n, then n copies (total) of the text

specified by rangelist are inserted at position. A negative count is

illegal.

Defaults: If no rangelist is specified, the current cursor is used. If no

position is specified, the end of the current cursor is used.

3.3.8.3 Outputs

Std err - diagnostics, if any.

workbuffer - the work buffer now contains the data which was

copied at its new (as well as old) location.

Cursor - the cursor points to the new copy of the data

which was copied, unless the copy failed, in

which case the cursor is unchanged.

Vol 7

3-31



3.3.9 Delete command D

The Delete command allows text to be deleted from the work buffer.

3.3.9.1 Inputs

Command line [+count] D rangelist

workbuffer.

3.3.9.2 Processing

The lines specified in the linerange are deleted from the work buffer. If

none of the lines specified in the linerange exist, a warning diagnostic is

Issued.

Repeat Count: A repeat count is only allowed if no rangelist is specified.

If the current cursor is a line-position, nD will delete n lines starting at

the current line, -nD will delete the n lines preceding the current line.

If the current cursor is a character-position, nD deletes all characters in

the line to the right of the start of the cursor and the following n-1

lines, -nD deletes all characters in the line to the left of the cursor and

the preceding n-1 lines.

Verification: The lines, if any, containing the characters immediately

preceding and immediately following the deleted text are printed.

3.3.9.3 Outputs

Buffer I- - Buffer I- contains the deleted text.

workbuffer - lines are deleted as stated above.

stderr - diagnostic messages, if any.

Cursor - If lines were deleted, the cursor points to the

beginning of the first line following the last

line deleted. If the last line in the buffer was

the last line deleted, the cursor left at the end

of buffer.

Vol 7

3-32



3.3.10 Environment command E

The Environment command allows environmental data to be set and queried.

3.3.10.1 Inputs

Environment - see below.

Command line - E<Code><value>

3.3.10.2 Processing

The environment maintainer allows editor environmental data to be changed or

printed.

The Code must be the name of one of the environmental parameters in the list

below. If the name is valid, the value is checked to see if it is a valid

value for that particular parameter. If it is, the value is changed.

The following table gives the names of the environmental data, a description

of legal values for each and its default value

Code Name Default Value Use

E % <escape-char> Escape character

T <term-char> String Terminator

C N Y Case Matching

N Yes or No

M C T Ada Token Matching

C Literal Matching

y Y Y Verify Yes or

N No

Vol 7
3-33



D N Y Automatic InDenting

N Yes or No

1 10 Integer or Line Increment

Fixed Number

L This code prints the current environment

*The escape character may not be set to the string terminator

or a digit. The string terminator may not be set to the

escape character.

3.3.10.3 Outputs

std-err - diagnostic messages.

std out - listing of the value of the requested

environmental data.

Environment - value modified as stated above.

Vol 7

3-34



3.3.11 Find command F

The Find command locates a string in the work buffer.

3.3.11.1 Inputs

Command line - [+count) F string [rangelist]

3.3.11.2 Processing

The string is searched for in the text delimited by the rangelist. If the

string is found, the cursor is set to point to the string.

Repeat count: If a repeat count of n is specified, the nth occurrence of

the string in the text delimited by the rangellst Is searched for. A

negative count causes a backward search over the range.

Defaults: If no r angelist is specified, the search is from the next

character or line position (depending on whether the cursor is set to a

string or line position, respectively) to the end of the buffer, or to the

beginning of the buffer for a reverse search.

If a null string is specified, the most recent search string is used.

Verification: If verification is on, the line(s) containing the search I

string are printed.

3.3.11.3 Outputs

std err - diagnostic messages, if any.

Cursor - Points to the string if one was found.

Otherwise, it is unchanged.

Buffer 1- is set to the string specified In the command. If the string

was not found buffer I- is unchanged.

Vol 7
3-35



3.3.12 Insert command I

The Insert command allows text to be inserted in a buffer.

3.3.12.1 Inputs

Command line - {+countl I string.

workbuffer.

3.3.12.2 Processing

The text given in the string is inserted immediately after the current

position.

If new lines must be created in the work buffer because because carriage

return(s) appear in the string, the current increment will be used. The

first new line to be inserted will have the key (current-key +

current-increment). Subsequent lines will have keys each more than the

previous key by the value of current-increment.

If the numbering scheme stated above would cause the sequence numbers to no

longer be in strictly ascending order, the string will be saved as the

current replacement string, but no change will be made to the work buffer.

A diagnostic will be issued if this occurs.

Indenting: If auto-indenting is turned on, each time a new line is

inserted, it will begin with the same number of blanks as there were leading

blanks on the previous line. Any blanks entered at the start of the line

will cause further indenting. Backspaces and back tabs may be used to undo

indenting. On full-duplex terminals the appropriate number of blanks will

be printed after the prompt. In half-duplex mode the supplied blanks will

not be echoed, but will be entered into the buffer.

Repeat count: If the command is given a repeat count of n, the string will

be inserted n times. A negative count inserts the text in front of the

current position.

If a null string is specified, the most recent replacement string will be

used.

Vol 7
3-36



3.3.12.3 Outputs

workbuffer - The string is inserted in the work buffer.

std err - diagnostic, if any.

Cursor - The cursor points at the most recently inserted

string.

Buffer I+ Buffer I+ (replacement string) is set to the string

specified in the I command.

I

Vol 7
3-37



3.3.13 KAPSE Command Processor K

The K command causes a command string to be jassed to the ACLI.

3.3.13.1 Inputs

Command line - K string.

3.3.13.2 Processing

The string is passed to the ACLI to be interpreted as a KAPSE command. The

ACLI is called as a subordinate task. Editing continues after the

completion of the command.

3.3.13.3 Outputs

stdout - Diagnostic messages, if any.

KAPSE Command -The string from the Editor command line is

passed to the ACLI.

Vol 7
3-38 Nov.,



3.3.14 Locate line command L

The Locate command positions the cursor to the specified line position.

3.3.14.1 Inputs

Command line - [+count] L [line-position]

workbuffer.

3.3.14.2 Processing

The Locate command causes the cursor to be set to the line position of the

specified line.

Repeat Count: A repeat count is allowed only if no line position is

specified, this default is described below.

Default: If no line position is specified, nL positions the cursor to the

nth following line, -nl positions the cursor to the nth preceding line, oL

positions the cursor to the current line.

3.3.14.3 Outputs

cursor - cursor set to specified line position.

std err - diagnostic if specified line does not exist.

Vol 7
3-39



3.3.15 Move command M

The Move command causes text to be transferred from location(s) in the

workbuffer to the current or specified position.

3.3.15.1 Inputs

Command line - [count] M [change rangelistM[@position]

workbuffer.

3.3.15.2 Processing

The Move command causes text to be transferred from one (or several)

locations in a buffer to the current or specified position. If the position

is a line position, the first line moved becomes the next line after that

line. If the position is a character position, the first character of the

moved text follows immediately after that position.

If any range specified in the rangelist overlaps the destination, the move

is suppressed and a diagnostic is issued to the current error file.

If new lines are created, either because line range(s) are specified, or

because a character range includes an end of line, the first new line will

be at (current-key + current-increment), with each subsequent moved line

having a key current-increment higher than the previous. If this would

cause line(s) to be out of order, the move is suppressed and a diagnostic is

issued.

After the lines are moved, the lines specified by rangelist .are deleted.

This deletion does not occur if the move is suppressed.

Repeat count: If the repeat count is n, then n copies (total) of the text

specified by rangelist are inserted at position.

Defaults: If no rangelist is specified, the current cursor is used.

If no position is specified the end of the current cursor is used.

Vol 7 V

3-40

j k IM



3.3.15.3 Outputs

std-err - Diagnostic if position is within the range, or

if the move would cause lines to be out of order.

workbuffer - The lines specified by rangelist are moved to

position as specified above.

Cursor - The cusor points to the lines moved by this

command.

3-41
P~,



3.3.16 Number command N

The Number command causes the workbuffer, or a portion thereof, to be

renumbered.

3.3.16.1 Inputs

Command line - N[range][, number-1 [,number-2

workbuffer

3.3.16.2 Processing

The number command causes the workbuffer to be renumbered. The lines in the

specified range are renumbered starting at number-1 with an increment of

number-2. If the number command would cause any keys to be other than in

ascending order, the numbering will be halted before this occurs, and a

diagnostic will be issued to the current error file.

Repeat count: A repeat count has no effect on this command.

Defaults: If no range is specified, the entire buffer is renumbered. If

number-2 (the increment) is not specified, the current increment will be

used. If number -1 (the starting number) is not specified, the first line

of the range will be used as the starting number.

3.3.16.3 Outputs

std-err . diagnostic if renumbering would cause lines to

be out of order.

workbuffer - The lines which had old keys in the specified

range are renumbered, starting at number-1 with

an increment of number -2.

Cursor - set to point to the renumbered lines.

Vol7
3-42 '



3.3.17 Print Command P

The Print command causes text to be printed on std-out.

3.3.17.1 Inputs

Command line - P [rangelist]

workbuffer

3.3.17.2 Processing

The Print command causes the text specified in the rangelist to be printed

on the current output buffer. Line positions cause entire lines to be

printed. Character positions cause the printing of only the specified text.

Repeat Count: A repeat count with a range list causes the text to be

printed the specified number of times.

Default: If no rangelist is specified, nP causes the n lines following the

current line to be printed, -nP causes the n lines preceding the current

line to be printed.

3.3.18 Introduction -- Quit command Q

The quit command causes a termination of the Editor and a return to its

invoker.

3.3.18.1 Inputs

std in - confirmation of whether to quit if data may be

lost.

3.3.18.2 Processing

If the work buffer has been modified since the last time it was written and

the Editor was invoked in interactive mode, the user is warned that changes

were made to the work buffer and asked to confirm the quit. If the reply is

in the negative, then no further action is taken and the command executor

resumes control. If a positive response is given, or if it was unnecessary

to ask the question, the Editor is terminated.

Vol 7
3-43

• • t- . , I .. . .. - ... . .



As part of the termination process, any temporary buffers created by the

Editor are deleted.

3.3.18.3 Outputs

stdout - Request for confirmation if data will be lost

Editor temp buffers - deleted

Vol 7
3-44



3.3.19 Read command R

The read command causes text to be read from a specified file into the work

buffer.

3.3.19.1 Inputs

Command line - [count] R [file] [rangelist] [# position]

Workbuffer

File specified in command line

3.3.19.2 Processing

The read command causes the lines specified in rangelist to be read from the

file specified in the command line into the specified position in the work

buffer. If for some reason the file cannot be read, a diagnostic is issued.

If new lines are created, either because line ranges(s) are specified, or

because a character range includes an end of line, the first new line will

be at (position-key + current-increment), with each subsequent moved line

with a key current-increment higher than the previous. If this would cause

line(s) to be out of order, the read is suppressed and a diagnostic is

issued.

Repeat count: If a repeat count of n is specified, a total of n copies of

the specified lines are inserted at the specified position.

Defaults: If no line range is specified, the entire file is read. If no

file is specified, the current read file is used. If no position is

specified, the end of the current cursor is used.

3.3.19.3 Outputs

std err - if the read fails, a diagnostic is issued.

workbuffer - the lines read from the specified file have

been copied to the specified position in the

work buffer.

Vol 7
3-45

I#



Current read file - the file name specified in the command

is remembered as the current read file.

Cursor - If the read is Successful, the cursor is set to

point at the lines read by the command.

Vol 7
3-46



3.3.20 Substitute command S

The substitute command causes one string to be replaced by another.

3.3.20.1 Inputs

Command line - [count] S string-1 string-2 [rangelist)

workbuffer

3.3.20.2 Processing

The substitute command causes the specified occurences of string-1 to be

replaced by string-2. If no repeat count is specified, but a range is, all

occurrences within that range are replaced. If neither a range nor a repeat

count is specified, only the next occurrence is changed.

Repeat count: If a repeat count of n iE specified, the first n occurrences

of string-1 within the range are replaced by string-2.

Defaults: If no repeat count is specified, string-2 is substituted for all

occurrences of string-1 within the bounds of the rangelist. If no rangelist

is specified, the range used is from the next character or line position

(depending on whether the cursor is set to a string or line position,

respectively) to the end of the buffer. If either string-1 or string-2 is a

null string, the most recent search string or the most recent replacement

string, respectively, is used.

3.3.20.3 Outputs

workbuffer - Occurrences of string-2 are substituted for

string-1 as specified above.

Cursor - Points to the most recently substituted string-2,

if at least one substitution was made. If no

substitution was made the cursor position will

be unchanged.

Search string - set to string-1 (Buffer I-)

Replacement string - set to string-2 (Buffer I )

Vol 7

3-47

L-



3.3.21 Write instruction W

3.3.21.1 Inputs

Command line - W [file] [rangelist]

Work file

3.3.21.2 Processing

The write command causes text to be written to a specified file. The

workbuffer text described by rangelist is written to the file. Workbuffer
keys are used for the output file records. If the file cannot be written

for some reason, a diagnostic is issued.

The cursor position is unchanged.

Repeat count: A repeat count has no effect on this command.

Defaults: If rangelist is not specified, the entire workbuffer is written.

If a file name is not specified, the current output file is used. Note that

the current output file is initialized to the edited object when the Editor

is entered.

3.3.21.3 Outputs

std err - diagnostic if the file can't be written

File specified in command line - the text specified by the

rangelist is written to the buffer.

Current output file name - If a file was specified in the command line,

the current output file name is set to that file.

Vol 7
3-48

--,am UM



3.3.22 EXecute macro command X

The eXecute macro command cases an Editor command macro to be executed.

3.3.22.1 Inputs

Command line -- integer X character (string)

Buffer -- the contents of the buffer designated the

character.

3.3.22.2 Processing

The number of strings following the command must be equal to the integer

which precedes it. If this is not true, a diagnostic is issued.

The strings will be pushed onto a parameter stack. While the macro is being

executed, the ith parameter will be available as %li. Recursive execution

of macros is permitted. If there is not enough room to save the parameters,

a diagnostic will be issued.

The next command to be executed by the command executor will be taken from

the buffer designated by the character specified in the command. Commands

will continue to be taken from the buffer until the end of the buffer is

encountered or an error occurs.

3.3.22.3 Outputs

stderr - diagnostic messages, if applicable.

next command pointer - points to buffer

Vol 7

3-49

4 d



3.3.23 Zone Mark Command Z

The Zone command is used to mark a specified range of characters as being

distinguished. This distinguished range of characters may be used as the

source string of a Copy, Move or Print command and may also be deleted with

the Delete command. The Zone command uses cursor movements and string

searches to identify the distinguished range of characters.

Note: Within a buffer only a single distinguished Zone is recognized. The

Zone command causes an existing distinguished Zone to be no longer a

distinguished Zone.

3.3.23.1 Inputs

Command line - Z {{<char>1H(cursor-move)}/

3.3.23.2 Processing

The Zone command causes a specified range of characters to be marked as

distinguished. The cursor position at the start of the command is

considered an anchor position. The Z command is directed to perform cursor

movements through cursor movement characcters and string searches. At the

completion of the Z command the cursor position is the final position and

all characters between the anchor position and the final position are marked

as being in a distinguished Zone.

Cursor Movements

Move one space right

Move one space left

Move up one line

Move down one line

String Searches

When one or more non-cursor movement characters are entered a forward search

for the string is made and the cursor is positioned to the right of the

string.

A cursor movement character ends a search string. A slash ends the Zone

command.

Vol 7
3-50 [

* -* *



3.3.23.3 Outputs

The specified range of characters are marked as being distinguished. The

distinguished Zone may be referenced in a Copy, Move, Print or Delete

command as CO, M', PO or DO.

I

Vol 7
3-51



3.4 ADAPTATION

This section describes the the data requirements of the Editor with respect

to system environment, system parameters and system capacities.

3.4.1 General Environment

On some systems the user interface will be limited to half-duplex mode.

Low-speed lines would preclude the use of szreen-oriented echoing.

3.4.2 System Parameters

The block size for text object may differ from system to system.

3.4.3 System Capacities

The number of buffers available on a given system may be limited by the

number of objects which the MAPSE allows to be open on a given host. There

may be a limitation on the total space available for buffers on some

systems. The size of an object which may be edited is limited to the size

of MAPSE text objects, which In turn may depend on the host.

3.5 CAPACITY

Not applicable.

Vol 7

3-52



SECTION 4. QUALITY ASSURANCE PROVISIONS

4.1 INTRODUCTION

This section contains the requirements for verification of the performance

of the MAPSE Editor. The test levels, verification methods, and test

requirements for the detailed functional requirements in Section 3 are

specified in this section. The verification requirements specified herein

shall be the basis for the preparation and validation of detailed test plans

and procedures for the Editor. Testing shall be performed at the

subprogram, program (CPCI), system integration, and acceptance test levels.

The performance of all tests, and the generation of all reports describing

test results, shall be in accordance with the Government approved CPDP and

the Computer Program Test Procedures.

The verification methods that shall be used in subprogram and program

testing include the methods described below:

1. Inspection - Inspection is the verification method requiring visual

examination of printed materials such as source code listings, normal

program printouts, and special printouts not requiring modification of

the CPCI. This might include inspection of program listings to verify

proper program logic flow.

2. Analysis - Analysis is the verification of a performance or design

requirement by examination of the constituent elements of a CPCI. For

example, a parsing algorithm might be verified by analysis.

3. Demonstration - Performance or design requirements may be verified

by visual observation of the system while the CPCI is executing. This

includes direct observance of all display, keyboard, and other

peripheral devices required for the CPCI.

4. Review of Test Data - Performance or design requirements may be

verified by examining the data output when selected input data are

processed. For example, a review of hard copy test data might be used

to verify that the values of specific parameters are correctly computed.

Vol 7
4-1

f 1" .a -. _L .. ... . .. . ..... _ . ,,, , " . ' ,,. ,, ..v ... 4,, L. . .,-



5. Special Tests - Special tests are verification methods other than

those defined above and may include testing one functional capability of

the CPCI by observing the correct operation of other capabilities.

These verification methods shall be used at various levels of the testing

process. The levels of testing to be performed are described in the

paragraphs below. Data obtained from previous testing will be acceptable in

lieu of testing at any level when certified by CSC/SEA and found adequate by

the RADC representative. Any test performed by CSC/SEA may be observed by

RADC representatives whenever deemed necessary by RADC,

Table 4-1 specifies the verification method for each functional requirement

given in Section 3 of this specification. The listing in Table 4-1 of a

Section 3 paragraph defining a functional requirement implies the listing of

any and all subparagraphs. The verification methods required for the

subparagraphs are included in the verification methods specified for the

functional requirement. Acceptance test requirements are discussed in

Paragraph 4.3.

4.1.1 Subprogram Testing

Following unit testing, individual modules of the Editor shall be integrated

into the evolving CPCI and tested to determine whether software interfaces

are operating as specified. This integration testing shall be performed by

the development staff in coordination with the test group. The development

staff shall ensure that the system is integrated in accordance with the

design, and the test personnel shall be responsible for the creation and

conduct of integration tests.

4.1.2. Program (CPCI) Testing

This test is a validation of the entire CPCI against the requirements as

specified In this specification.

CPCI testing shall be performed on all development software of the Editor.

This specification presents the performance criteria which the developed

CPCI must satisfy. The correct performance of the Editor will be verified

by testing its major functions. Successful completion of the program

Vol 7
4-2

Vol 7



testing that the majority of programming errors have been eliminated and

that the program is ready for system integration. The method of

verification to be used in CPCI testing shall be review of test data. CPCI

testing shall be performed by the independent test team.

4.1.3. System Integration Testing

System integration testing involves verification of the integration of the

Editor with other computer programs and with equipment. The integration
tests shall also verify the correctness of man/machine interfaces, and

demonstrate functional completeness and satisfaction of performance

requirements.

System integration testing shall begin in accordance with the incremental

development procedures as stated in the CPDP. Final system integration

shall occur subsequent to the completion of all the CPCIs comprising the

MAPSE system. Two major system integration tests shall be performed: one

for the IBM VM/370 implementation and one for the Interdata 8/32

implementation. The method of verification used for system integration

testing shall be the review of test data.

The test team shall be responsible for planning, performing, analyzing

monitoring, and reporting the system integration testing.

4.2 TEST REQUIREMENTS

Quality assurance tests shall be conducted to verify that the Editor

performs as required by Section 3 of this specification. Table 4-1

specifies the methods that shall be used to verify each requirement. The

last column refers to a brief description of the specified types of

verification as given below. Test plans and procedures shall be prepared to

provide details regarding the methods and processes to be used to verify

that the developed CPCI performs as required by this specification. These

test plans and procedures shall contain test formulas, algorithms,

techniques, and acceptable tolerance limits, as applicable.

Subprogram testing will take two forms during the development of the

Editor. Initially, scaffolding routines and debugging printouts will be

necessary. Later, it will be possible to test the Editor through the use of

Editor commands.

Vol 7
4-3



initial subprogram testing will concentrate on the command executor and the

command parser, since these functions Must be working in order for Editor

ommands to be executed. During the early stages of development, listings

of the tokens created by the parser and lines read and written by the Editor
will be Used to verify that statements are being parsed properly.

Later on In the development, subroutines will be tested by entering commands

that exercise those particular subroutines. The Editor will be designed so

that there is a close relationship between the command entered and routines

called, so it will be Possible to check out a given routine by entering the

appropriate commands.

In addition, the environment maintainer will provide flags which can be set

by environment commands, and which may be checked so that debugging

printouts can be produced.

Vol 7 "1
4-4



Table 4-1. Test Requirements Matrix

SECTION TITLE INSP. ANAL. DEMO. REV. PARA. NO.

3.3.1 Editor Initialization : X X I 4.2.1,4.2.2.

3.3.2 Command Parser X X 4.2.1,4.2.2,

3.3.3 Expression Evaluation I X I 4.2.2 1

3.3.4 String Handling X I X I 4.2.1,4.2.2o

3.3.5 Command Executor I X I 4.2.2 1

3.3.6 Alter Command X 4.2.2 1

3.3.7 Buffer Command I x 4 .2.2 1

3.3.8 Copy Command I I X I 4.2.2 1

3.3.9 Delete Command I X I 4.2.2

3.3.10 Environment Command I X 4.2.2

3.3.11 Find Command I X 1 4.2.2 1

3.3.12 Insert Command XI X 4.2.2

3.3.13 KAPSE Command Proc. I X I 4.2.2

3.3.14 Locate Line Command I X 4 4.2.2

3.3.15 Move Command I X I 4.2.2

3.3.16 Number Command X 4.2.2 1

3.3.17 Print Command I X 4.2.2 1

3.3.18 Quit Command I I X 1 4.2.2

3.3.19 Read Command I I X I 4.2.2 I

3.3.20 Substitute Command X 1 4.2.2 I

3.3.21 Write Command K X 4.2.2 1

3.3.22 EXecute Macro Command I I K 4.2.2

3.3.23 Zone Mark Command I X 4.2.2 1

Vol 7
4-5

................................



4.2.1 Inspection

During development the Editor will be tested by creating and modifying test

objects and then printing them using file dump and file tools. These tool

will already be in the APSE toolset, so they will not exist just for Editor

testing.

4I.2.2 Review of Test Data

The testing of the Editor will use prepared scripts and command files and

text objects which serve either as input to the Editor or for comparison

with Editor ouput. The results of edit sessions will be compared to files

which contain the correct results, by means of a file comparison tool.

One test will ye to create a CLI command file which can be executed. If it

executes correctly, the interface is good. Another test will be to list an

Editor created file with a listing utility. The reformated output from the

complier will be used to verify that the Editor can, in fact, read a file

created by another tool.

4.3 ACCEPTANCE TESTING

Acceptance testing shall involve comprehensive testing at the CPCI level and

at the system level. The CPCI acceptance tests shall be defined to verify

that the Editor satisfies its performance and design requirements as

specified in this specification. System acceptance testing shall test that

the !4APSE satiLfies its functional requirements as stated in the System

Specification.

Acceptance testing will consist of. a more formal version of program

testing. Prepared scripts and command files will be used. However, since

the goal in acceptance testing is to Insure a correct product, rather than

to isolate problems, the granularity of the test may not be as for program

testing. Again, a file comparison tool will be Used.

Vol 7
4-6



The following area must be tested during acceptance testing:

Syntax checking - correct and incorrect commands

Incorrect commands must be diagnosed.

Commands

All command types

All argument types

With and without defaults

Cursor setting

Intra-line editing

All intra-line commands

Conditionals

Different values for condition

In range/out of range (with and without else)

Failures within conditional group

Repeated groups

With range, repeat count, both

Echo modes (half-/full-duplex)

Verification (on/off)

Hatching (string/Ada token/text token)

String processing

All excape sequences

Abbreviations

Cursor, etc.

Vol 7
4-7



Create/modify files

Multiple file inputs

Environment

Set

List

Buffers

Define procedures

Execute procedures

Various numbers of parameters

Switch work file

Retrieve buffer value

These tests shall be conducted by the CSC/SEA team and formally witnessed by

the government. Satisfactory performance of both CPCI and system acceptance

tests shall result in the final delivery and acceptance of the MAPSE

system. All formal testing will be witnessed by the Government.

Vol 7
4-8 y



SECTION 5. DOCUMENTATION

5.•1 GENERAL

The documents that will be produced during the implementation phase in

association with the test Editor development are:

1. Computer Program Development Specification

2. Computer Program Product Specification

3. Computer Program Listings

4. Maintenance Manual

5. Users Manual

6. Rehostability Manual

7. Language Reference Handbook

5.1.1 Computer Program Development Specification

The final text Editor B5 Specification will be prepared in accordance with

DI-E-30139 and submitted 30 days after the start of Phase II. A single

document will be prepared for the Editor that defines the functional

capabilities and interfaces. Any dependencies on the host system will be

addressed in the document. Additionally, characteristics of potential host

systems which have had impact on the B5 specification will be presented.

5.1.2 Computer Program Product Specification

A type C5 specification shall be prepared during the course of Phase II in

accordance with DI-E-30140. This document will be used to specify the

Editor design and development approach for implementing the B5

specification. This document will provide the detailed description which

will be used as the baseline for any Engineering Change Proposals. A single

C5 will be produced for the Editor with different sections addressing the

dependencies of the two host computers.

Vol 7
5-1



5.1.3 Computer Program Listings

Listings will be delivered which are the result of the final compilation of

the accepted Editor. Each compilation unit listing will contain the

corresponding source, cross-reference and compilation summary. The source

listing will contain the source lines from any INCLUDEd source objects.

5.1.4 Maintenance Manual

An Editor Maintenance Manual will be prepared in accordance with DI-M-30422

to supplement the C5 and compilation listings sufficiently to permit the

Editor to be easily maintained by other than the developer. The

documentation will be structured to relate quickly to program source. The

procedures required for debugging and correcting the Editor will be

described and illustrated. Sample run streams for compiling Editor

components, for relinking the Editor in parts or as a whole, and for

installing new releases will be supplied. The data base will be fully

documented with pictures of record layouts where appropriate and data

algorithms explained.

The Maintenance Manual will be organized with a standard outline and

separate parallel volumes will be delivered which address the tailoring of

the Editor to a particular host system. Debugging aids which have been

incorporated as an integral part of the Editor will be described and their

use fully illustrated. Special attention will be given to the description

of the maintnance mode operation of the Editor used to aid in the

pinpointing of Editor problems.

5.1.5 Users Manual

A Users Manual shall be prepared in accordance with DI-M-30421 which will

contain all information necesgarj for the operation of the Editor. Because
of the virtual user interface presented by the CLI, a single manual is

sufficient for all host computers. Information relevant to specific host

systems (such as maximum file sizes, etc.) will be contained In appendices.
Sample Editor listings will be included in the manual.

Vol 7 -7/
5-2



A complete list of all Editor diagnostic messages will be Included with

supplemental information chosen to assist the programmer in locating and

correcting Editor command errors.

5.1.6 Rehostability Manual

In accordance with R&D-137-RADC and R&D-138-RADC, a manual will be prepared

which describes step by step the procedures for rehosting the text Editor on

a different computer. Tips will be provided wich will guide the developer

module by module as to what may be used entirely or in part.

5.1.7 MAPSE Tools Reference Handbook

A MAPSE Tools Reference Handbook will be prepared which will contain syntax

diagrams for all KAPSE command constructs. Other handy information such as

number conversion and ASCII encoding tables, and host system parameters will

be included. A summary of the Editor's command syntax and a brief

description of the commands will be prepared as part of this handbook.

Vol 7

5-3



,7_

APPENDIX A - SAMPLE EDIT COMMANDS

Some of the basic Editor commands are shown below.

A.1 F Find

Find a string

FABC/ Find the the first occurrence of the

string "ABC" searching from the current

position to the end of the workbuffer.

FXYZ/100 Find the first occurrence of the string

"XYZ" in line 100.

-FALPHA/ Find the string "ALPHA" searching backward

from the current position to beginning of

the workbuffer

FBETA/300..500 Find the string "BETA" searching from line

300 thru line 500 inclusively

3FGAMMA/600 Find the third occurrence of the string

"GAMMA" in line 600.

F/ Find the most recent search string

searching from the current position to the

end of the workbuffer

FIP/300..400 Search forward for the string contained in

buffer P from line 300 to 400.

Vol 7

A-1



A.2 D Delete

Delete lines

D 100 Delete line 100

D100..200 Delete lines 100 thru 200 inclusively

D300#7 Delete character seven on line 300

D320#11..15 Delete characters eleven thru fifteen

inclusively on line 320

D61,37,43 Delete lines 61,37 and 43

3D Delete three lines starting at the current

line

DO Delete the distinguished Zone.

A.3 S Substitute

Substitute string-1 with string-2

SABC/DEFG/200 Substitute all occurrences of the string

"ABC" in line 200 with "DEFG"

3SABC/DEF/300..500 Substitute the first 3 occurrence& %f the

string "ABC" in lines 300 thru 500

SALPHA/BETA/ Substitute the first occurrence of the

string "ALPHA" with the string "BETA",

searching from the current position to the

end of the workbuffer.

Vol 7

A-2

. "" I II II



S// Substitute the first occurrence of the

most recent search string with the most

recent replacement string, searching from

the current position to the end of the

workbuffer.

3S/GAMMA/ Substitute the first three occurrences of

the most recent search string with

"GAMMA", searching from the current

position to the end of the workbuffer.

SDELTA/EPSILON/ 10,20,33 Substitute every occurrence of "DELTA" in line

10,20 and 33 with "EPSILON"

A.4 C Copy

Copy text to a position, the source text is not deleted.

C30..60 Copy lines 30 thru 60 inclusive to the

current position.

3C80 Copy line 80 three times to the current

position.

CI0,30..33,20 Copy line 10, lines 30 thru 33 inclusive

and line 20 to the current position.

C200..250@710 Copy lines 200 thru 250 inclusive to the

position immediately after line 710. If

line 710 does not exist the first line

copied is given line number 710.

Ce Copy the distinguished zone to the current

position.

CIP Copy the contents of buffer P to the

current position.

Vol 7

A-3



Note: The current-increment will be used for numbering the copied lines.

The first line copied is given a line number current-increment higher than

the line number preceding the position copied into. When copying into a

nonexistent line number, the first line copied is given that line number.

A.5 M Move

Move text to a position, delete the source text.

M55 Move line 55 to the current position

Ml10..150 Move lines 110 thru 150 inclusive to the

current position

M90..95@120 Move lines 90 thru 95 inclusive to the

position following line 120 or if line 120

does not exist to that corresponding

position

M10,333,111 Move lines 10,333 and 111 to the current

position

3M90@400 Move line 90 three times to the line

following lihe 400 or to the corresponding

position if line 400 does not exist

14 Move the distinguished zone to the current

position

MIQ91O Move the contents of buffer Q to the line

following line 910 or to the corresponding

position if line 910 does not exist

Vol 7

A-4



Note: The copied lines are deleted from the source. Incrementing is

performed just as for copy.

A.6 I Insert

Insert text into the current position.

The following example shows inserting several lines after line 2230

(assume current-increment=5, indenting on)(<CR>stands for carriage

return, user commands are underlined)

L2230I<CR>

2235 begin<CR>

2240 SUM:=O;<CR>

2245 for J in RAINBOW loop/<CR>

The line number prompts will be supplied by the Editor. The "/"

ended the insert.

The following example shows the insertion of a string within a line

(assume verify mode, user commands are underlined)

FX:/<CR>

1935 procedure INCR X: );

I in out INTEGER/<CR>

1935 procedure INCR(X: in out INTEGER);

A.7 N Number

Number a range of lines.

N re-Number the whole workbuffer with

current initial number and current

increment

N100..200,110,5 re-Number lines 100 thru 200 inclusive,

start numbering at 110 in increments of 5

Vol 7

A-5



N333,350 re-Number line 333 as 350

N,100,100 re-Number whole file from 100 in

increments of 100

A.8 R Read

Read (a portion of) an Ada Object into the workbuffer, only text objects

may be read.

RDEV TAB/ Read the contents of text object

DEVTAB into the current position

RTASK TT/O..99 Read the text between lines 0 and 99

inclusive from text object TASK _IT

into the current position. Neither

line 0 nor line 99 need exist

RDEV TAB2/@1100 Read the contents of text object DEV

TAB2 into the position following line

1100 or the corresponding position if

line 1100 does not exist.

R11 Read the file or buffer named by the

string contained in buffer 1 into the

current position. If buffer 1

contained the seven character string

"DEVTAB", this command would be the

same as the first example above.

Note: The text lines read into the current worktuffer are renumbered

just as for a copy

Vol 7

A-6

PM



AD-A1AR 980 COMPUTER SCIENCES CORP FALLS CHURCH VA FIG 9/2
ADA INTEGRATED ENVIRONMENT 11 COMPUTER PROGRAM DEVELOPMENT SPEC -- TC(Ul
DEC Al _F30602-8O C 0292

UNCLASSIFIED RADC-TR-81-364 PT-2 NL



2

I1.2L5 II 4 1.6

V!, vt tO il i N 1 l ".k



A.9 W Write

Write (a portion of) the current work buffer to a text object.

If the text object is not empty, the output will be appended to the

object.

WTPTA/300..400 Write lines 300 thru 4O0 inclusive to TPTA

WTQAA/5,100..200,13 Write lines 5, 100 thru 200 inclusive and

line 13 to TQAA

A.10 B Buffer

Switch the current work buffer to a specified buffer.

BA Switch to buffer A. The text in buffer A

acts as the current work buffer

B<CR> Switch back to the default work buffer.

A.11 L Locate Line

Position the cursor to a specified line

LIO Locate line 100, cursor set to line 100

L300 Locate line 300, cursor set to line 300

A.12 P Print Lines

Print specified lines

P200 Print line 200

P400..415 Print lines 400 thru 415

Vol 7
A-7 .7

..... , ., . , , -- . . . .. ... - i. :, . - .. ..- ...- ', - . -- .,-.. _ -- -



Volume 8

COMPUTER PROGRAM DEVELOPM4ENT SPECIFICATION

(TYPE B5)

COMPUTER PROGRAM CONFIGURATION ITEM

I

I4APSE Debugger

Prepared for

Rome Air Development Center

Griffiss Air Force Base, NY 13441

Contract No. 730602-80-C-0292

Vol 8

It

- - . - -

- 4~. --



T&ABLE OF CONANiTS
Vol 8

P age
Section 1 - Scope ..................................................... 1-1

1.1 Iuentification .......... ........o.....................1-1
1.2 Functionial Summary.......... ....-....................... 1-1

Section 2- Applicable Documents ........................ . . 2-1

2.1 Program Definition Documents ...... o......................
L1.2 Inter Subsystem Specifications..... ........ ......... 2-1

23 Military Specifications and Standards.... ................ 2-1
2o4 Miscellaneous Documents ...........................-. ... 2-1

Section~ 3 - Requirements ............ o.....................o.....0.........-1

3.1 Introduction ...... o....................-........... ... 3-1
3.1.1 General Description ..................... o...............0....3-1
3.1.2 Peripheral Equipment Identification ............oo..............3-1
3.1.3 Interface Identification ................ o............o..........-2
3.1.4 Function Identification ....................... o............ 2
3.2 Functional Description ............ ........o................
3.2.1 Equipment Description... ........... .............0.............-
3.2.2 Comiputer Input/Output Utilization... ........-.............
3.;2.3 Computer Interface Block Diagram ....... ....... 0..............3-4
3 .2.4 Program Interfaces ........ o..........o...................... ]-
3.2o5 Function Description...... ............ .0.......0...........3-14

-3 Detailed Functional Requirements ......... ....................- l
3.3.1 Initialization..........................3-10

332 Directive Recognition (Director) ......o.... 0....................-20
3.3.3 Help ....... .......o...................o........o............o 3-21
3. .4 Use-,...............................3-22e
3.3.5 Gt.............................3-2j
3o3.6 Insert..... .......oo........................................ ..- Z4
33.7 Stop........... ...................... ...................... 3-25
3.3.8 Display. ......... ............o..........o....o....o........... -(
3.309 Assignment ....... o......0......................................3-27
3.3.10 Trace ....... o.........o.........................................-Llb
3.3.11 Dump ..... .. ...............o............................o......3-29

j312 Block Prcsig.......... . . . . . .- 30
3.3.13 Search,.................. . . . . . 3-31
3.3.14 Trap... ........... o.............................. o.............-32
3315 Load,.......o - -.............. o......... o ........ 33

3.3.16 Call.o......................-.................. ......... 3-34
3.3.17 Cancel. . .. o... ....... . . . . . . . .- 3
3.3.18 Record. ........................ o......o.............. 0.........3-36
3.3.19 Executor ......................... o...... o..... ........ 3-37

3.3.20~~o I lnor................. ........ ..... 3-39

Vol 8

ii4i



Page
3.4 Adaptation ................................................... 3-40

3.4. 1 General Environment .......................................... 3-40i

3.4.2 System Parameters .............................................- 40
3.4.3 System Capacities........................................ 3-40
3.5 Capacity .......................................................-40

Section 4 -Quality Assurance Provisions .............................. 4-1

4.1 Introduction ................................................. 4-1
4.1.1 Subprogram Testing ........................................... 4-2
4.1.2 Program (CPCI) Testing ....................................... 4-L-
4.1.3 System Integration Testing ................................... 4-4
4.2 Test Requirements ............................................ 4-4
4.2.1 Review of Test Data .......................................... 4-!5
4.2.2 Special Tests ........................ 4-5
4.3 Acceptance Testing ........................................... 4-5

Section 5- Documentation .......................................... 5-

5.1 General ...................................................... 5-1
5.1.1 Computer Program Development Specification ................... 5-1
5.1.2 Computer Program Product Specification ....................... 5-1

5.1.j Computer Program Listings .................................... 5-i2
5.1.4 Maintenance Manual ........................................... 5-2
5.1.5 Users Manual ................................................. 5-2
5.1.6 Retargetability/Rehostability Manual ......................... 5-,
5.1.'j MAPSE TOOLS Reference Handbook .......................... 5-3

Vol 8
IV q



Sk.CIIUN 1- SCUPE

1 1 IDENTIFICATION

This specification establishes the performance, design, development, and

test requirements for the MAPSE debugging facility, the Debubger. The

purpose of this specification is to define the Debugger being designed as

part of the Ada Integrated Environment contract for RADL. This uocument

will serve to communicate the functional design decisions that have been

adopted, to provide a baseline for the detailed design and implementation

phase and to identify any interfaces between the Debugger, the KAPSE systels,

and the remaining MAPSE tools.

1.2 FUNCTIONAL SUMMARY

The Debugger aids the Ada programmer In the checkout of Ada programs.

Oriented toward interactive use, the Debugger allows the user to monitor an

executing program by displaying the contents of the data and tracing the

program flow. The user may interrupt an executing program, make prograu anu

data changes, set program breakpoints and collect path entrance and timing

statistics. Statements, objects, types and expressions way be referenced

using Ada symbology. Source lines numbers (or keysi may be usea to relate

the source program to the executing program. Although intended prirarily

for debugging at the Ada language level, the Debugger provides several

,irectives that permit the user to perform operations at machine level,

allowing instruction stepping, dumps (relocatable and absolute), patching,

and examination of hardware registers.

The Debugger interfaces are described in the remaining sections. Briefly,

those interfaces are:

1. Ada Debug Tables (ADTs) - These tables are produced by the

Complier as part of the relocatable object and are relocated and

included into the load object by the Linker.

2. LoaQ Objects -- the ADTs shall not be loaded into memory with a

program but shall be accessed directly by the Debugger from the

load object.

Vol 8

1--1



3. Ada Run-Time -- the Debugger must be cognizant of' the conventions

for subprogram calls, space management, exceptions, and tasking.

4. APSE Command Language Interpreter -- The Debugger shall form a part

of the APSE Command Language Interpreter (ACLI) to permit the user

to have full access to the APSE cozmaaids while debugbing. The
Debugger shall operate synchronously with the user's program

(process).

Vol 8
1-2



SECTION 2 - APPLICABLE DOCUMENTS

2.1 PROGRAM DEFINITION DOCUMENTS

1. Reference Manual for the AGa Programming Language, July 19b0

2. Requrirements for Aoa Programming Support Environment, "STONEMAN",

February, 1980.

3. Statement of Work, Contract No. F30602-bO-C-U292, 80 Mar 26.

2.2 INTEH-SUBSYSTEN SPECIFICATIONS

4. System Specificaton, 15 March 19b1.

5. Volume 1, Computer Program Development Specification for CPCI KAPSE

Framework.

b. Volume 2, Computer Program Development Specification for CPCI KAPSE

Data Base System.

7. Volume ,. Computer Program Development Specification for CPCI APSE

Command Language Interpreter.

8. Volume 4, Computer Program Development Specification for CPCl MAPSE

Configuration Manager.

9. Volume 5, Computer Program Development Specification for CPCI MAPSE

Compiler.

10. Volume b, Computer Program Development Specification for CPCI MAPSE

Linker.

11. Volume 7, Computer Program Development Specification for CPCI MAPS

Editor.

2.3 MILITARY SPECIFICATIONS AND STANDARDS

12. MIL-STD-4b , Configuration Management Practices for Systems,

Equipment, Munitions, and Computer Programs, 1 June 101.

1b. MIL-STD-490, Specification Practices, 30 October 1968.

2.4 MISCELLANEOUS DOCUMENTS

14. DIANA Reference Manual, 5 February 19b1.

15. CSTS GPS Reference, Vol. 1, General.

Vol 8
2-1



16. DECsystem-10 Assembly Language Handbook, DDT.

17. IULTlCS Programmers Hanual-CommanJs anu Active Functions.

Vol 8
2-2

all



SECTION 3 - REQUIREMENTS

3.1 INTRODUCTION

This section provides the general description, identifies the external and

internal interfaces, provides the functional requirements and presents the

internal characteristics of the Configuration Item identified as the

Debugger.

3.1.1 General Description

The MAPSE Debugger operates as an independent subprogram of the APSE Command

Language Interpreter (ACLI) and permits the user to observe and or change

the operation of an executing program. The Debugger directives may be

entered immediately after a program has been loaded but before its

execution, or after execution has commenced by interrupting its operation.

The Debugger shall operate with privileges that permit it to access and

modify another process's instruction and data (after validation of the

user's right to do so). The Debugger user interface shall support both

immediate execution of directives or the implanting of directives (or

primitive Ada statements) at selected points in the Ada program for

execution when the implant location is encountered during the course of

program execution.

The Debugger shall be reentrant and may operate on any of a user's active

processes. The Ada Debug Tables (ADTs) shall be accessed by compilation

unit (or active scope within a compilation unit) from the load object as

needed to minimize memory requirements. The ADTs shall contain sufficient

information about a program to allow the user to reference any program

entity symbolicly in Ada syntax.

3.1.2 Peripheral Equipment Identification

The Debugger shall interface with peripheral equipment only as a potential

source for its directives and to output the response to its directives.

However, since this Interface will be through the Ada Standard I/O Package,

the devices shall be transparent to the Debugger.

I.

Vol 8
3-1

I. . , ,,+ +,,,+ + m



The Debugger must be aware of the instruction set and hardware addressing

architecture of the target computer of the programs being debugged.

Initially the computer equipment of concern is Identified as the IBM 370 and

the Interdata 8/32.

3.1.3 Interface Identification

Tht, Debugger interfaces are identified as the ACLI, the KAPSE Data Base

System (KDBS), the KAPSE Framework (KFW). the Ada Compiler, the Linker, and

the User through the Debugger Directive Language.

3.1.14 Function Identification

The Debugger is functionally grouped for specification purposes into four

segments. These segments are Identified below.

Initialization

This segment is Used to establish the relationship of the Debugger and the

process to be debugged (referred to hereafter as the DP). Part of this

function is to initialize the description of DP and access the appropriate

sections Of the ADT.

Directive Recognition

The functions performed under this grouping are the directive parsing,

establishing the ADT environment for name referencing, and evaluating

directive expressions.

Directive Processing

The third grouping comprises the performance of the actions required by the

individual Debugger directives. Among the functions that may be performed

are display of program variables and -hardware register contents, dumps Of

Ada program instructions or data in symbolic and machine format, recording

of various execution statistics and Ada program data for subsequent analysis

or data reduction, and searching of the Ada program for particular values or

address references.

Vol 8
3-2



Program Execution

The final logical segment of the Debugger controls and monitors the

execution of the subject program. Its functions are to perform various

program tracing as selected by the user, to interface with the directive

processor when implanted directives and breakpoints are encountered during

program execution, to continuously monitor indicated variables or addresses

for changed values (wild store traps), to collect path entrance and timing

information, and perform any statement or instruction simulation necessary

to perform controlled or stepped execution.

3.2 FUNCTIONAL DESCRIPTION

This section describes the functions of the Debugger, the program and

equipment relationships and interfaces identified above, and the

input/output utilization in the Debugger.

3.2.1 Equipment Description

The host computers upon whose definition the Debugger depends are the IBM

VM/370 and the Interdata 8/32.

The directive interface uses the Ada character set. Some user mechanism

must be available such as escape or break to effect a user generated process

interruption. However, this particular character or mechanism is handled by

the terminal handlers and is unknown to the Debugger.

3.2.2 Computer Input/Output Utilization

Directives are assumed to exist in the standard input file. Listing output

is written to the standard output file and diagnostic messages are directed

to the standard error file. The debug process's ADTs are read from the load

object.

Strictly speaking, the Debugger has almost no interface to the computer upon

which it is hosted. However, since the Debugger must, of course, understand

inherently the target computer for which the program to be debugged has been

compiled, and since the target is often the host computer, the distinction

is academic. The target dependencies shall be isolated as follows. The

representation of the target memory image on the host shall be described in

Vol 8
3-3 - /

TU



a package. Implant definitions shall be reserved to the Implanter

function. The remaining dependency is the format of target assembly

language instructions in the dump processor.

3.2.3 Computer Interface Block Diagram

See Figure 3-1.

3.2.4 Program Interfaces

This section describes the Debugger interfaces and their purposes.

APSE Command Language Interpreter (ACLI)

The Debugger forms a part of this NAPSE tool and is invoked as a result of

the ACLI encountering a Debugger directive. The ACLI and the Debugger

cooperate during the processing of directives to permit each to utilize the

services of the other. In particular, command macros, condition execution

and transfer of control within commands is the responsibility of ACLI.

References to, and evaluation Lf, Ada variables in ACLI commands are the

responsibility of the Debugger.

KAPSE Data Base System (KDBS)

The KDBS is called directly and through the Standard I/O package to perform

directive input from standard input and to output various Debugger responses

to standard output and standard error.

KAPSE Framework (KFW)

The KFW is called to load the ADTs from the load object of the process to be

debugged (referred to as DP); to bind the DP and the ACLI process together

as necessary to ensure that both are available to the other during the

debugging operations; to control the initiation, priority and resumption of

DP; to establish addressing access, memory mapping, and memory protection

for DP; to acquire additional workspace; and to query and manipulate Process

Control Blocks (PCBs) in order to test, report on and change DP's execution

context, i.e., its register settings, program counter, stack pointers, etc.

Vol 8
3-4

S L-l -



NMSPROCESS LEVEL KERNEL PROCESS LEVELI

MOST

LEVE

-~ ~ ~ V -O -- - - -

Figure 3-1G. InefEeDaRamL

=N ~ ~ ~ ~ o 8CES TTIUE
ARICHVE. BC3UPEM PARITION UPPOR

COMPILE

S~~~ A' - *.



Ada Compiler

The Compiler produces the ADTs used by the Debugger to relate the DP code

and data to the Ada source names and attributes. The code produced by the

compiler represents another interface that the Debugger must understand to

perform its functions. These interfaces embody the conventions followed by

the executing program for subprogram calls and management, for Ada tasking,

for local and heap data referencing, for register usage, and as a result of

optimization.

Linker

The Linker relocates any addresses occurring in the ADTs and produces the

load objects accessed by the Debugger.

Simulator

The Debugger is designed to interface with future target programs being

executed via simulation. The implants inserted shall cause the simulator to

relinquish control to the Debugger. All interfaces with the target program

shall be in the target image as represented on the host. The existence of

the simulator shall be transparent to the Debugger.

User

The Debugger functions are requested by utilizing a Debugger Directive

Language (DDL). Ada program expressions, statements and objects are

referenced in the DDL using Ada compatible syntax. The DDL is oriented

toward usage in an interactive environment but is accepted identically from

interactive terminals, directive objects or batch devices.

Vol 8
3-6



Program Interface Diagrams

The Debugger has two logical relationships that can be represented by

separate diagrams. The first represents the interfaces resulting from

communication between tools via the KDB objects. The second is the

interface of the user to the debug process through the ACLI and the

Debugger. Those diagrams are shown below.

*MATA WWIR

TEXT
EDITOR OI~S

1*OMMANDAD

OWIECTS)COPLRCMIE

(PROGRAM IREI.CATANLE
USGRARIES) OUJECTS)

(COMTINNS

LDERECT INKERIN

Fiur 32.Debuge II efa

OEBUMER I KAP/
Vo 8ODE

LIVNG

1VRCIE IMPLANTS-



Debugger Directive Language

The Debugger utilizes a very simple directive language but supports a rich

Ada expression capability.

The general format of the directives are:

[label:] actiont,option ... ) operand

Each directive may have an optional label. A label is a name beginning wit.h

a letter and having zero or more additional alphanumeric or underscore

characters. The action is a predefined Debugger word made up of one or more

letters. All actions may be abbreviated to one or more of the initial

characters of the action word. The operands are made up of values, names,

expressions, or lists of the foregoing whose meaning depend upon the action

indicated. The options are represented as a series of single letters

amplifying the action to be performed. The directives are:

load obj~name [ ( parameters .... ) J

This directive is used to create a process and to ready the load

object named for execution. Execution shall not begin until a goto

is encountered at which time the parameters shall be passed as if a

call of the object name had occurred as an ACLI command.

goto [ address I [ , ( sli ) integer-expression I

This directive is used to start or resume execution of a program.

If the operand is missing, the Debugger shall begin execution with

the main program, if no prior execution had occurred, or at the

current execution address if execution had been interrupted. The

Debugger shall permit execution to begin at a user specified

address but cannot insure that scope elaborations are valid or that

the optimizer has not made some assumptions about the program that

would be Incompatible with the indicated transfer. Use of operands

with this directive are not recommended when debugging at the Ada

level. The user may request that execution continue for a specific

number of statements or target instructions by Using the s or I

Vol 8
3-8



options; the integer expression value is used as the number to

execute. Declarations in an Ada program are counted as statements

for the purpose of this directive.

help [action )

This directive is used to offer the user on-the-spot help with the

Debugger directives. If the action is omitted, the Debugger shall

display a summary of the directives available and their purpose.

If an action is specified, its format and detailed usage shall be

displayed.

insert ( address ; ' directive ;... " } I ?

This directive is used to cause the execution of a set of

directives each time the specified location is executed. By

implanting a stop directive, an execution breakpoint is effected

and the Debugger shall solicit more directives. When an insert is

made, the Debugger responds with a number that it associates with

the insert. This number may be used to identify the insert for

later disabling. If the question operand is present, the Debugger

shall list the number and location of each active implant.

cancel integer ,...

Cancel the implant(s) identified.

stop{,stp} { expression }

When inserted as an implant, this directive shall cause execution

of the program to be suspended and Debugger directives to be

requested. This directive has no effect when encountered other

than as an implant. The value of the expression shall be printed

when the stop is encountered. If the "s" option is selected, the

execution context status shall be displayed. The p option requests

a walkback printout of the active procedure call chain.

trace[,(p I f I s I a I i I w I o }] (address ,... [ ,file I

Vol 8

3-9



This directive causes tracing printout as the program executes.

The options are used to control the level of trace desired or to

turn the trace off. The options are:

p Issue message when a procedure, function, package or block is
entered or exited. On entrance, the in and inout parameters

shall be printed; on exit, the inout and out parameters or

function results shall be printed.

f Used to cause a flow trace. A message shall be printed when

any transfer of control occurs (includes calls, gotos, ifs,

cases, exceptions, etc.).

s Traces each statement executed and the values of any variables

set as a result of their execution.

a Traces at the instruction level and lists the assembly

instructions executed and any hardware registers changed as a

result of the execution.

i Traces the results of I/O operations performed using the Ada

Standard I/O Package. On read or write operations, the record

contents will displayed.

w Prints the current walkback of active subprogram calls and the

parameters passed.

0 Turns the trace indicated in this directive off. If no trace

indicator is indicated, all traces are turned off.

trap[,s] variable I addressrange

trapE,o] [ number I

This directive allows the user to monitor an address or variable

for a changed value. When the directive is encountered, the

contents of the variable, or address(es), are recorded. At every

Vol 8
3-10 4



reentrance to the Debugger, the contents will be examined. In

addition, the contents will be checked at subprogram entrances and

exits. In either case, if the contents have changed since the

prior recorded value(s), the contents are displayed and the new

values are recorded. If the s option is selected, DP will be

suspended and the Debugger will be put in control; otherwise,

execution will continue.

Each trap directive will be assigned an implant number which will

be displayed. The o option form of the trap directive is used to

remove an existing trap. If the identifying trap number is

omitted, all traps are removed. Where the host computer supports

store traps, or where DP is being executed under simulation

control, the tests may be performed more frequently.

variable := expression I @

This is used to set a variable to a new value or to display its

address. If the expression is present, the variable shall be

assigned the value of the expression. If the '@' is present, the

current address of the variable shall be displayed.

expression ?

This directive is used to display the value of a variable or an

expression. The value shall be displayed using Ada symbology

according to its type. If the expression is a variable, applicable

indices and component names will be displayed.

dump[,{ i I r I b I o I h I c I a I s I I address range

Dump is used to display memory in a selected format. If the format

is omitted, the dump shall be printed in octal or hex, whichever is

native to the target, plus the character representation. Addresses

shall be displayed both relative to the compilation unit and its

location counters and in absolute form. An option may be used to

specify the dump format. The format options are:

Vol 8
3-11



i integer

r real

b boolean or binary depending upon variable size

o octal

h hexadecimal

c character

a assembly level instructions

s hardware status -- condition codes, registers, etc.

use { library unit I packagename ,

This directive is used to specify the default qualification to be

used for name resolution.

search address_range, I expression I range ) [, mask ]

This directive is used to search a range of memory for a particular

value or for a value that lies within a specified range.

Additionally, the searched words may be extracted using the

indicated mask before applying the comparison.

{ flow I time ) [,plflr] subprogram ,...

These two directives are used to count flow path entrances (flow)

or to accumulate process time utilization (time) for the

subprograms specified. If the p option is selected or no option is

indicated, data will be collected on a subprogram basis; the f

option collects on individual flow paths (see trace directive).

The r option shall produce a report of the information collected

for the subprogram(s) indicated.

Vol 84
3-12

. .. . . . .. . .. .... .. . ...~~-- T _ .. - . .-- . .



record[,rlw] file , { variable ,... 

This directive is used to perform a simple record read or write of

the variable using the file specified. The variable recorded shall

be identified sufficiently in the file to permit an independent

tool, using just the file and the ADTs from the associated load

object, to data reduce the value. The r option is used to set a

variable from a value in the file; the w option is used to write

its value to the file. This facility is intended to support

scaffolding and environment simulation.

print textobject [ linerange I

This f&0a-1*y is used to print a specified line range from a text

file su- z- an Ada source object. Since ACLI commands may be

in~s -4 .-d with Debugger directives, a user may invoke the Editor

to w ,e *urce modifications as debugging progresses.

quit

This directive causes the Debugger to return control to the ACLI.

All traps, implants and connections to DP are disabled. The

debugged process shall resume execution unless it has completed.

The expressions supported by the Debugger are expressed using Ada syntax as

defined in the Ada reference manual. The operators and built-in functions

supported shall be at least the following;

On records and arrays -- component selection, slicing and equality

tests.

On scalar type variables and expressions --

+ - / mod rem

< > = /= <= =>

and or xor not in

& *w abs new pred succ

Aggregates shall be allowed. In addition, time operations and the val and

image attributes shall be supported. The Ada abort, raise and delay

statements are also permitted as directives.

Vol 8
3-13



3.2.5 Function Description

The following paragraphs are composed of two parts: the first is a

paraphrasing of the explicit Debugger requirements as outlined in the above

referenced Statement of Work (SOW); the second are those additional

requirements that are believed necessary to provide a consistent,

user-oriented and integrated development system for embedded computer

applications.

3.2.5.1 SOW Requirements

These paragraphs describe the interpretation of the explicit SOW

requirements.

The MAPSE system shall include facilities to assist batch and on-line users

in discovering, finding and correcting Ada program errors. The Debugger

must support debugging at the Ada level in that user input and Debugger

output shall reference Ada source program statements by name or number (line

number), Ada symbols, and variable names. Ada variable values shall be

specified and referenced in Ada source format.

The Debugger must support all Ada language features including Ada tasking.

The Debugger must permit association of the load form of an Ada program with

its corresponding source. Although this does not imply source level

interpretation, facilities must be supported to access and list the related

source, by accessing the original source object.

The Debugger must support the initialization and dynamic setting of

conditional breakpoints and the single step execution on both an instruction

and a statement basis.

The Debugger shall permit display and modification of Ada program variables

and constants in machine and symbolic scalar type format at the user's

option.

Tracing of program flow, including the display of subprogram argument values

and names, shall be allowed. The user may also modify program flow;

however, any change of flow from that represented by the program source is

very dangerous because of optimizer assumptions, exception handling and

scope elaboration requirements.

Vol 8
3-.14I



The user may select areas of memory for dumping.

3.2.5.2 Other Requirements/Capabilities

The following presents those additional functional capabilities which are
believed necessary for a minimal Ada developmental system debugger.

No Special Compile Mode

Object programs shall, by default, be generated in a debuggable manner,

i.e., the ADTs shall be produced automatically by the Compiler and passed on

by the Linker. No hooks shall be generated in the code that would expand

the size of a program to be debugged. The ADTs shall be associated with an
executable program but shall not be part of the loaded data. The Debugger
shall access the information from the load file. Similarly, the Debugger

shall use the technique of instruction implantation and memory protection to

control the debugging functions rather than rely upon compiler generated

hooks and simulation.

Performance and Verification Support

The Debugger shall provide support for recording path entrance counts and

timing statistics to facilitate program tuning and path entrance

verification. The user may request program status reports; this shall

include execution accounting information, path frequency counts, current
program counter and special machine register values.

Directive Implantation

In addition to interactive directive execution, the Debugger shall permit

the Implantation of any Debugger directive for processing during program

execution.

Dynamic Interruption

The normal mode of program checkout will be to load a program, perform some

Initial setup of breakpoints or Implanted commands, and then to Initiate

interactive execution. An equivalently important requirement, however, is

to permit Interruption of an executing program that may be showing signs Of
aberrant behavior. A requirement for embedded debugging code can never be

completely anticipated and seemingly thorough test cases seldom reveal

problems of timing, space management, and language feature Vs. optimization

Interaction.

Vol 8

3-15



Performance Characteristics

Performance considerations shall be a major concern of the Debugger design.

Toward this end, the technique selected to facilitate program control is via

instruction implantation rather than interpretation. Likewise, to prevent a

space impact due to an increased memory space requirement to contain the

ADTs, the ADTs shall be read in sections as needed.

Reliability

The MAPSE Debugger shall be designed to be reliable, to obey Ada strong

typing and visibility rules, and to prevent violation of multiple user

address spaces (as might occur for shared code).

3.3 DETAILED FUNCTIONAL REQUIREMENTS

This section describes in detail the functional processing to be performed

by the Debugger. The Debugger is organized to be driven by user

directives. The directives are processed by a common scanner (Director),

any expressions are computed, and one of the eighteen directive processors

is invoked. The processing of the directive is completed by the processor

and control is returned to the Director.

A major partition of the Debugger is the Implantor. The Implantor is

responsible for inserting all DP breakpoints, traps, or directive implants.

A second major function of the Debugger is performed by the Executor. The

Executor is responsible for any operation involving the activation of DP's

code. When required the Implantor will ready the DP for execution and

suspend the Debugger process until an implant is encountered by the DP

durinmg the course of its execution. Figure 3-3 below depicts the structure

of the Debugger.

Vol 8

3-16 '"

.t



*1

a

£

0)

K dJ
U

I..'
4.'
cn
l~I
0) I
00 ~.
00

0)

a C.,

C.,

0)
I..'

& 00

a

I

S

Vol. B
3-17

0~ - .,. -. - -. '.



Before delving into the details of the Debugger components, a few

definitions are necessary that will be referred to within the descriptions

below.

Implants replace DP instructions and cause the Debugger to resume control

when these implants are encountered during the execution of DP.

The context of DP comprises the collective description of its execution

state. The context shall include the present program counter at the point

of interruption, the stack status, the interruption cause, the task identity

for multiple Ada task processes, and a list of active implants.

The Debugger is written entirely in Ada. The Debugger has no direct host

computer interfaces; its intraprocess interfaces are serviced by the KFW.

Small portions of the Debugger will be dependent upon characteristics of the

target computer.

The Debugger is invoked as a procedure as follows:

DEBUG ( PROCESS-ID )

where PROCESS-ID is the identity of the debug process (DP)

3.3.1 Initialization

The initial function of the Debugger is to initialize its data space,

establish a co-process relationship with DP and include the DP address

space(s) within its address space.

3.3.1.1 Inputs

DP - The process to be debugged.

Vol 8
3-18

..



3.3.1.2 Processing

The KFW is called to bind the Debugger (ACLI) process to DP to insure that

the two processes are always swapped together. The DP is incorporated into

the address space of the Debugger again through a KFW interface. Heap space

of DP is acquired for working space and to contain the ADT sections

temporarily in use by the Debugger. Directive processing is initiated.

3.3.1.3 Outputs

None.

3.3.1.4 Special Requirements

This area is sensitive to the host machine and underlying system

architecture as the facilities for creating co-processes and address sharing

may differ substantially.

Vol 83-19



3.3.2 Directive Recognition (Director)

This logical segment of the Debugger is responsible for the syntax analysis

of the Debugger directives and driving the remaining Debugger functions.

3.3,2.1 Inputs

Standard input -- the input object or terminal from which the directives

shall be read.

3.3.2.2 Processing

Each directive is lexically analyzed. If a label is encountered, the label

is associated with the current directive object position. If the next token

is not an action primitive, the name is assumed to be an Ada name or

expression that must be resolved using the ADTs.

This name (or any other name occurring within the directive) is resolved in

the following manner. If the name is fully qualified by a library unit, it

shall be resolved from the ADTs. An attempt shall be made to resolve the

name by using the visibility rules applied at compilation for the current

active scope of the program or, alternatively, by resolving to a name made

directly visible via the "use" directive.

Next any expressions encountered within the directive shall be parsed and

their values computed. Control shall then transfer to one of the functions

below according to the action requested.

3.3.2.3 Outputs

Any error encountered in the processing of the directive shall be reported

on the standard error file.

Vol 8

*-3-20



3.3.3 Help

This paragraph describes the Debugger's directive assistance facility.

3.3.3.1 Inputs

An optional action word may be specified.

3.3.3.2 Processing

If no action is specified, the list of allowable actions and a brief summary

of their purposes is produced. If a specific action is identified, a

detailed explanation of the directive's syntax and usage is displayed.

3.3.3.3 Outputs

The stated output is written to standard output.

Vol 8
3-21



3.3.4 Use

This section describes the directive used to establish the default scope

qualification for Ada program name resolution.

3.3.4.1 Inputs

The library unit or package qualification to be used as the default for name

resolution. This name must be of a compilation unit.

3.3.4.2 Processing

This directive serves two purposes. The first is an external function used

to allow simpler reference to names contained in the compilation unit or

package most commonly referenced by the user during debugging. The second

function is the mechanism by which this resolution is accomplished; i.e.,

the ADT for the indicated compilation unit is promoted to in-core residence

both to support the resolution and to improve performance by permitting

faster resolution of the high frequency references.

3.3.4.3 Outputs

None.

Vol 8
3-22



3.3.5 Goto

This paragraph describes the processing of the goto directive.

3.3.5.1 Inputs

An optional goto address may be supplied.

3.3.5.2 Processing

If an address is supplied, the context of DP is changed to reflect a revised

program counter using the address specified. Execution of DP is then

resumed by transferring control to the Executor.

3.3.5.3 Outputs

If an address is supplied which is out of the current context scope but in

an active scope, a warning diagnostic is issued on standard error. If the

address is in a currently inactive scope, a serious diagnostic is issued on

standard error and control is returned to the directive processor.

Vol 8
3-23

-AL|



3.3.6 Insert

The insert function is to perform the functions of the insert directive.

3.3.6.1 Inputs

Insert has two inputs: the first is the address at which the inserted

directive string is to be placed, and the second represents the directives

to be inserted.

3.3.6.2 Processing

The Insertion address Is located and the instruction(s) at the address are

examined to insure safe implanting. If the instruction context will not

allow insertion, e.g., a skip instruction, an address adjustment is

requested from the user. These instructions are then replaced by an

instruction which shall cause interruption of DP1s execution and the

Debugger to resume control. The replaced instruction(s) are saved with the

implant directives for subsequent execution when the insert address is

encountered during the course of DP execution.

3.3.6.3 Outputs

If no implant string is input, a list of the currently active implants is

written to standard output. If an implant instruction conflict occurs at

the address indicated an address revision is requested. When a successful

implant can be made, an implant identity is indicated on standard output.

3.3.6.14 Special Requirements

The implanting is target dependent. Both the safe context for implanting

and the implanted instruction required to place the Debugger back in control

when the implant is encountered will change with each target.

Vol 8
3-24



3.3.7 Stop

The stop directive processing is described below.

3.3.7.1 Inputs

A stop expression may be optionally specified.

3.3.7.2 Processing

When this directive is encountered, the context program counter is noted

both symbolically and by machine address on standard output. The Stop

expression value, if present, is also displayed on standard output. If the

's' option is present, the context status is displayed. Control returns to

the directive processor.

3.3.7.3 Outputs

The stop address and expression value are written to standard output as

stated.

Vol 8
3-25



3.3.8 Display

This function is called as a result of "expression ?" appearing as a

directive.

3.3.8.1 Inputs

A pointer to the ADT entry for the variable to be displayed and any

associated indices or access variables are input.

3.3.8.2 processing

If the variable is a scalar quantity, its name, any indices and the current

value of the variables shall be displayed in the Ada symbolic representation

for its declared type. If the variable is of a composite type such as array

or record, each component shall be so displayed. Control shall then resume

with the Director.

3.3.8.3 Outputs

Variable names and values shall be output to standard output.

Vol 8

3-26 lt



3.3.9 Assignment

These paragraphs describe the processing of the assignment directive.

3.3.9.1 Inputs

The name and indices of the variables are input as well as the new value

which the variable is to be assigned.

3.3.9.2 Processing

The value to be assigned is checked for constraint violations according to

the type of the subject variable. If in violation, a diagnostic is issued

and the assignment is not made. Otherwise the value is assigned to the

variable and control returns to the Director.

3.3.9.3 Outputs

If a value or indices constraint violation is discovered, or if the

variable's declaration has not been elaborated, or the variable has been

delaborated, a diagnostic shall issued on standard error accordingly.

I

I,

Vol 8
3-27



3.3.10 Trace

The processing of the trace directive is described in the following

paragraphs.

3.3.10.1 Inputs

The trace option requested is input.

3.3.10.2 Processing

This directive causes internal trace options in the Debugger to be activated

according to the trace option selected. If a trace limit address is

specified, a trace-off directive is implanted at the address indicated.

Processing returns to the Director.

3.3.10.3 Outputs

None.

Vol 8
3-28



3.3.11 Dump

The processing of the dump directive is described below.

3.3.11.1 Inputs

The address range to be dumped and the dump format to be used is input.

3.3.11.2 Processing

The address range specified is dumped in the format specified. The dump

addresses shall be listed by library unit and location counter as well as by

absolute value. If the format selected is assembly, each recognizable

instruction shall be disassembled and operands shall be represented as

relative to the compilation unit In which they occur.

3.3.11.3 Outputs

The symbolic dump output shall be listed on standard output.

Vol 8

3-29



3.3.12 Block Processing

These paragraphs describe the processing associated with both the timing and

path entrance directives.

3.3.12.1 Inputs

The scopes to be monitored for timing or path entrance statistics collection

are specified.

3.3.12.2 Processing

The processing of these two functions are very similar. Each basic block

described in the ADT which is within the scopes indicated shall be implanted

successively as execution proceeds. This is controlled by setting internal

Debugger flags indicating that one or both of these basic block functions

are required. If timing is to be collected or path entrances are to be

counted, an implant is made at the beginning of the indicated scope.

Implants are also inserted at block exits for timing accumulation. The

actual timing functions are made by the Executor.

3.3.12.3 Outputs

None.

3.3,12.4 Special Requirements

The host and any underlying operating system must provide facilities for a

relatively fine level of cpu time utilization for the timing statistics to

be accurate.

Vol 8
3-30



3.3.13 Search

This function is to support the search directive.

3.3.13.1 Inputs

Three values are required for the search directive processing: the search

address range, the search value or value range, and the mask to be applied.

3.3.13.2 Processing

This directive is primarily used when debugging at the machine level but is

nonetheless quite useful. The function is performed by searching all words

(or sets of words according to the search value type) for the value

specified. If a value range is specified, the words are examined to

determine if their value is within the range specified. If a mask is

supplied, the words are extracted before the comparison.

3.3.13.3 Outputs

Every occurrence of a successful find is indicated on standard output by

printing the address of success and, for a value range search, the value

found.

Vol 8

3-31

. . .1



3.3.14 Trap

The trap directive functions are described below.

3.3.14.1 Inputs

The address or variable to be trapped is input.

3.3.14.2 Processing

The indicated address or variable is recorded as a trap and the current

value in the address or variable is saved. Additionally, an address limit

breakpoint is inserted at the end of the scope of the variable (for

non-static variables only). A trap implant is made into the scope prologue

and epilogue routines to test for changed values in any trapped addresses

and variables. When a trap has a changed value, the execution state, the

trap, and the new value are listed and execution continues. When the trap

limit address or scope exit is encountered, the trap is disabled.

3.3.14.3 Outputs

When a trap directive is encountered the current value is printed on

standard output. When a trap has changed values, the trap and its new value

are listed.

3.3.14.4 Special Requirements

Some computers will support such store traps directly providing a finer

degree of trapping.

Vol 8

3-32q2J j



3.3.15 Load

The load function is responsible for creating a user process in response to

a load directive request.

3.3.15.1 Inputs

The inputs to the load function are:

load object -- program to be executed

Parameters -- the parameters to be passed to the process

3.3.15.2 Processing

Load shall call the KFW to create a process. This process shall be assigned

a priority less than that of the Debugger to prevent its execution. The

parameters shall be entered in the user's space and directive processing

shall continue.

3.3.15.3 Outputs

Load shall generate a diagnostic of standard error if the load object does

not exist or the user does not have execute access to the object.

Vol 8
3-33



3.3.16 Call

This functional unit is responsible for the call directive.

3.3.16.1 Inputs

The call directive inputs are:

Procedure name -- procedure to be called

Parameter list -- of parameter to pass to the procedure

3.3.16.2 Processing

Call sets up a call to the subject procedure in the DP's address space. The
parameter conventions for the target shall be obeyed. The Implantor is
called to cause a return to the Debugger when the procedure completes its
execution. The Executor is invoked to begin the execution of DP at the
procedure call established.

3.3.16.3 Outputs

If the procedure has any output parameters. the values shall be assigned as
necessary after returning from the procedure.

3.3.16.4I Special Requirements

Since the call to be setup is target-dependent, this module will require
modification for retargeting.

Vol 8

.- ~7~ 7.rj3-34.



3.3.17 Cancel

This module is called to process a cancel directive.

3.3.17.1 Inputs

The list of implant numbers to be cancelled in input to cancel.

3.3.17.2 Processing

After validating that the implant number is valid, Cancel simply calls the

Implantor with the list of implants to be cancelled.

3.3.17.3 Outputs

If the implant is invalid, a diagnostic shall be written to standard error.

I

Voli8

3-35

'A..,i



3.3.18 Record

This unit is called to perform the record directive functions.

3.3.18.1 Inputs

File name -- file to be read or written

Options -- to indicat read or write

Variable list -- list of variables to be transferred

3.3.18.2 Processing

Record attempts to open the file requested if it is not already opened. If

the read option is selected, the value is read in and assigned to the

variables in the order of their appearance in the list. If tte write option

is requested, the load object name, the qualified variable name, any indices

associated with the variable, and the variable value(s) are written to the

file.

3.3.18.3 Outputs

File name -- The value of the variable is written to the file if the

write option is requested.

Vol 8

3-36
!



3.3.19 Executor

This the most complex of the functions to be performed by the Debugger and

comprises the bulk of the Debugger processing. This function is the control

of the execution of DP.

3.3.19.1 Inputs

There are not specific inputs to the Executor but many global parameters and

implants are used to control its performance. Amongst these flags are the

tracing parameters, the execution granularity, e.g., single step, timing and

path entrance options.

3.3.19.2 Processing

In the absence of any ongoing execution control, execution shall simply

begin by readying DP for scheduling and the Debugger process shall be put to

sleep. However, in the presence of any of the tracing, stepping, or

statistics collection functions, the Executor must insert an appropriate

implant into the code prior to resuming the execution of DP. When the next

implant or breakpoint is encountered, the Executor shall resume control and

react according to the implant encountered. The different causes and

resulting actions are described below:

Directive Implant

The execution state is saved and the Director is called recursively. When

completed, execution resumes.

Stepping Breakpoint

If tracing is active for the stepping level breakpoint encountered, an

appropriate flow trace message shall be printed. If the stepping range has

been execeeded, the stepping flags are turned off and control returns to the

Director. Otherwise the next step address breakpoint is implanted and DP

execution resumes.

Vol 8
3-37 

e7l31



Timing breakpoint

4If a scope entrance has been encountered, the current process clock value is

saved and then reset to zero. When a scope exit is encountered, the clock

value is added to the previous accumulated timing for the scope and the

clock is reset to the value saved at scope entrance. In either case, the

next breakpoint is set and execution is continued.

Path Entrance

When a basic block entrance is encountered, the path entry count is

incremented, the next breakpoint is set and execution resumes.

Address Limit

Various directives have address limits over which they apply. These limits

are implemented by inserting an address limit breakpoint. When such a

breakpoint is encountered, the affected action is disabled, and execution

resumes.

For all breakpoints, a check is made to determine if a tracing event has

occurred and the appropriate output is produced. Likewise, if a trapped

value has changed, generate trap output accordingly.

3.3.19.3 Outputs

None.

Vol 8

3-38 Vol 8



3.3.20 Implantor

This module performs all implants into the target process.

3.3.20.1 Inputs

Implant type -- type of breakpoint required

Address -- location of the implant

3.3.20.2 ProcessingI The Implantor shall be called by all directive processors and by the

executor for the insertion or cancelation of any implant. This function is

target-dependent because the instruction context of an implant address may

not permit the implant. The Compiler provides an address with each

statement for safe implanting. This address is used in the user has not

specified a particular address. The Compiler supplied address may be used

as an anchor point to locate legal implant location in the region if the

instructions are variable length.

3.3.20.3 Outputs

None.

3.3.20.4 Special Requirements

All target dependencies associated with implants are isolated in this module

to ease the task of retargeting.

Vol 8
3-39



3.4 ADAPTATION

This section describes any dynamic adaptation that might be required to

parameterize the Debugger's operational system environment, system

parameters, and capacities.

3.4.1 General Environment

The Debugger relies heavily on the functionality of inserted breakpoints.

This functionality can be machine-dependent and the Debugger will have to

adapt to any changes to the canonical functionality described in Paragraph

3.3.14. The Debugger, as well as the rest of the ACLI, also must respond to

user-generated "breaks" or interrupts, whose characteristics can also be

machine-dependent.

3.4.2 System Parameters

System parameters do not directly affect the size of the process being

debugged, since the Debugger, within the ACLI, executes as a separate

process. However, on systems with very limited memory, if the Debugger and

the debugged process cannot both be in main memory at the same time, the

performance of the Debugger will be severely constrained.

3.4.3 System Capacities

The Debugger will require space to retain timing and path counters for each

block or subprogram requested. There will be parameterized limits on the

number of counters allowed.

3.5 CAPACITY

Not applicable.

Vol 8
3.1401



SECTION 4 - QUALITY ASSURANCE PROVISIONS

4.1 INTRODUCTION

This section contains the requirements for verification of the performance

of the Debugger. The test levels, verification methods, and test

requirements for the detailed functional requirements In Section 3 are

specified in this section. The verification requirements specified herein

shall be the basis for the preparation and validation of detailed test plans

and procedures for the Debugger. Testing shall be performed at the

subprogram, program (CPCI), system integration, and acceptance test levels.

The performance of all tests, and the generation of all reports describing

test results, shall be in accordance with the Government approved CPDP and

the Computer Program Test Procedures.

The verification methods that shall be used in subprogram and program

testing include the methods described below:

1. Inspection - Inspection is the verification method requiring visual

examination of printed materials such as source code listings, normal

program printouts, and special printouts not requiring modification of

the CPCI. This might include inspection of program listings to verify

proper program logic flow.

2. Analysis - Analysis is the verification of a performance or design

requirement by examination of the constituent elements of a CPCI. For

example, a parsing algorithm might be verified by analysis.

3. Demonstration - Performance or design requirements may be verified

by visual observation of the system while the CPCI is executing. This

includes direct observance of all display, keyboard, and other

peripheral devices required for the CPCI.

4. Review of Test Data - Performance or design requirements may be
verified by examining the data output when selected input data are

processed. For example, a review of hard copy test data might be used

to verify.that the values of specific parameters are correctly computed.

Vol 8
4-114/3

q/3



5. Special Tests - Special tests are verification methods other than

those defined above and may include testing one functional capability of

the CPCI by observing the correct operation of other capabilities.

These verification methods shall be used at various levels of the testing

process. The levels of testing to be performed are described in the

paragraphs below. Data obtained from previous testing will be acceptable in

lieu of testing at any level when certified by CSC/SEA and found adequate by

the RADC representative. Any test performed by CSC/SEA may be observed by

RADC representatives whenever deemed necessary by RADC.

Table 4-1 specifies the verification method for each functional requirement

given in Section 3 of this specification. The listing in Table 4-1 of a

Section 3 paragraph defining a functional requirement implies the listing of

any and all subparagraphs. The verification methods required for the

subparagraphs are included in the verification methods specified for the

functional requirement. Acceptance test requirements are discussed in

Paragraph 4.3.

4.1.1 Subprogram Testing

Following unit testing, individual modules of the Debugger shall be

integrated into the evolving CPCI and tested to determine whether software

interfaces are operating as specified. This integration testing shall be

performed by the development staff in coordination with the test group. The

development staff shall ensure that the system is integrated in accordance

with the design, and the test personnel shall be responsible for the

creation and conduct of integration tests.

4.1.2. Program (CPCI) Testing

This test is a validation of the entire CPCI against the requirements as

specified in this specification.

Vol 81'
4-24I



Table 4-1. Test Requirements Matrix

SECTION TITLE INSP. SPEC. DEMO. DATA. SECTION NO.
3.3.1 Initialization X '.2.2
3.3.2 Directive Recognition 4X 1 I 4.2.2
3.3.3 Help ____ X 4.2.1
3.3.4 Use X '4.2.1
3.3.5 Goto ___ X 4 '.2.11
3.3.6 Insert 1I X 4.2.1 1
3.3.7 Stop ____ x 1 4.2.1 1
3.3.8 Display _____ X 4.2
3.3.9 Assignment X I X I 4.2.1
3.3.10 Trace r_____ X '4.2.1i
3.3.11 Dump x I 4.2.1
3.3.12 Block Processing rT X 1X 4.2.1
3.3.13 Search I__ * X 1 4.2.1
3.3.14 Trap I _ I X 4.2.1 1
3.3.15 Load X I 4.2.11
3.3.16 Call ___ X '4.2.11
3.3.17 Cancel X '4.2.1 1
3.3.18 Record x 4 '.2.1 1
3.3.19 Executor 4r I 11i1: '.2.2
3.3.20 Implantor ; X: [ : 4.2.2

Vol 84-3

- 17



CPCI testing shall be performed on all development software of the

Debugger. This specification presents the performance criteria which the

developed CPCI must satisfy. The correct performance of the Debugger will

be verified by testing its major functions. Successful completion of the
program testing that the majority of programming errors have been eliminated

and that the program is ready for system integration. The method of

verification to be used in CPCI testing shall be review of test data. CPCI

testing shall be performed by the independent test team.

4~.1.3 System Integration Testing

System integration testing involves verification of the integration of the

Debugger with other computer programs and with equipment. The integration

tests shall also verify the correctness of man/machine interfaces, and

demonstrate functional completeness and satisfaction of performance

requirements.

System integration testing shall begin in accordance with the incremental

development procedures as stated in the CPDP. Final System integration

shall occur subsequent to the completion of all the CPCIs comprising the

MAPSE system. Two major system integration tests shall be performed: one

for the IBM VM/370 implementation and one for the Interdata 8/32

implementation. The method of verification used for system integration

testing shall be the review of test data.

The test team shall be responsible for planning. performing, analyzing

monitoring, and reporting the System integration testing.

4. TEST REQUIREMENTS

Quality assurance tests shall be conducted to verify that the Debugger

performs as required by Section 3 of this specification. Table 4-1

specifies the methods that shall be used to verify each requirement. The

last colu.mn refers to a brief description of the speci'1ed types Of

verification as given below. Test plans and procedures shall Le prepared to

provide details regarding the methods and processes to be used to verify

that the developed CPCI performs as required by this specification. These

test plans and procedures shall contain test formulas, algorithms,

techniques, and acceptable tolerance limits, as applicable.

Vol 8
4-4

_____77



4.2.1 Review of Test Data

Scripts are prepared to exercise each command and the results are compared

to the test data.

4.2.2 Special Tests

Each function is tested as a part of the debugging process.

4.3. ACCEPTANCE TESTING

Acceptance testing shall involve comprehensive testing at the CPCI level and

at the system level. The CPCI acceptance tests shall be defined to verify

that the Debugger satisfies its performance and design requirements as

specified in this specification. System acceptance testing shall test that

the MAPSE satisfies its functional requirements as stated in the System

Specification. Acceptance testing shall be performed by review of test data.

These tests shall be conducted by the CSC/SEA team and formally witnessed by

the government. Satisfactory performance of both CPCI and system acceptance

tests shall result in the final delivery and acceptance of the MAPSE system.

Vol 8
4-5



SECTION 5 - DOCUMENTATION

5.1 GENERAL

The documents- that will be produced during the implementation phase in

association with the Ada compiler development are:

1. Computer Program Development Specification

2. Computer Program Product Specification

j. Computer Program Listings

4. Maintenance Manual

5. Users Manual

6. Retargetability/Rehostability Manual

7. MAPSE Tools Reference Handbook

5.1.1 Computer Program Development Specification

The final MAPSE Debugger B5 Specification shall be prepared in accordance

with DI-E-30139 and submitted 30 days after the start of Phase I. A single

document shall be prepared for the Debugger that defines the functional

capabilities and interfaces. Any dependencies on the host and target shall

be addressed in the document. Aaditionally, characteristics of potential

hosts and targets which have had impact on the B5 specification shall be

presented.

5.1.2 Computer Program Product Specification,,

A type C5 specification shall be prepared during the course of Phase II in

accordance with DI-E-O0140. This document shall be used to specify the

Debugger design and development approach for implementing the B5

specification. This doc'iment shall provide the detailed description which

Vol 8
5-1



shall be used as the baseline for any Engineering Change Proposals. A

single C5 shall be produced for the Debugger with different sections

addressing the dependencies of the two host computers.

5.1. Computer Program Listings

Listings shall be delivered which are the result of the final compilation of

the accepted Debugger. Each compiLation unit listing shall contain the

corresponding source, cross-reference and compilation summary. The source

listing shall contain the source lines from any INCLUDEd source objects.

5.1.4 Maintenance Manual

A Debugger Maintenance Manual will be prepared in accordance with DI-M-3U4

to supplement the C5 and compilation listings sufficiently to permit the

Debugger to be easily maintained by other than the developer. The

oocumentation shall be structureo to relate quickly to program source. The

procedures required for debugging and correcting the Debugger shall be

described and illustrated. Sample run streais for compiling Debugger

components, for relinking the Debugger in parts or as a whole, and for

installing new releases shall be supplied. The data base shall be fully

documented with pictures of record layouts where appropriate and the data

algorithms shall be explained.

The Maintenance Manual shall be organized with a standard outline ana

separate parallel volumes shall be delivered which address the tailoring of

the Debugger to a particular target or host computer. Debugging aids which

have been incorporated as an integral part of the Debugger shall be

described and their use fully illustrated. Special attention shall be given

to the description of the maintenance mode operation of the Debugger useu to

aid in the pinpointing of Debugger problems.

5.1.5 Users Manual

A Users Manual shall be prepared in accordance with DI-M-0421 and shall

contain all information necessary for the operation of the Debugger.

Because of the virtual user interface presented by the ACLI and the Debugger

directives, a single manual is sufficient for all host computers. Sample

Debugger listings shall be included in the manual.

Vol 8 I~
5-2



A complete list of all Debugger diagnostic messages shall be included with

supplemental information chosen to assist the prugrammer in locating and

correcting source program errors.

5.1.6 Retargetability/Rehostability Manual

In accordance with R&D-1J7-RADC and R&D-13b-RADC, a manual shall be prepared

which describes step by step the procedures for retargeting the Debugger to
a different computer an transporting the Debugger onto a different host

computer. Tips shall be provided which shall guide the developer module by

module as to what may be used entirely or in part.

5.1.7 MAPSE TOOLS Reference Handbook

A MAPSE Tools Reference Handbook will be prepared which will provide a handy

reference to the various MAPSE Tools. The Debugger directives will be

summarized in this handbook.

Vol 8

5-3

. .. ..I l



MISSION
Of

Rom Air Development Center
RA1)C ptan,6 and executes %ezeotch, development, te,6,t and
seected acqwizition ptog~am in 6uppo~t o6 Command, Cont't
CommnuniLcations, and In-teZtigence (C31) activitie,. Technicazt
and enginee~ing .uppo'tt within a'teas o4 technicaZ competence
£5 p4ovided to ESP P'togtam O66ce6 (POAs) and othe't ESO
eiement6. The p'uincpaZ tecknicaC miz&&Lon oAea, wte
communcation~s, etect~omagnetic guidance and contot, zut-
vattance oA q'tound and ae~'ospace ob * jct6, intetigence daita
cotection and handling, ingoitmaon sy,6tem technoto y,
iono,6phe'uic puopagation, zsotid state scenca~, rmtounwe
physic6 and etectonc keiabitt, maintainabiLtt and

* cornpa-tibitty.



D ATE

FILMED


